首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
When confronted with a marked increase in external osmolarity, budding yeast (Saccharomyces cerevisiae) cells utilize a conserved mitogen-activated protein kinase (MAPK) signaling cascade (the high-osmolarity glycerol or HOG pathway) to elicit cellular responses necessary to permit continued growth. One input that stimulates the HOG pathway requires the integral membrane protein and putative osmosensor Sho1, which recruits and enables activation of the MAPK kinase kinase Ste11. In mutants that lack the downstream MAPK kinase (pbs2Delta) or the MAPK (hog1Delta) of the HOG pathway, Ste11 activated by hyperosmotic stress is able to inappropriately stimulate the pheromone response pathway. This loss of signaling specificity is known as cross talk. To determine whether it is the Hog1 polypeptide per se or its kinase activity that is necessary to prevent cross talk, we constructed a fully functional analog-sensitive allele of HOG1 to permit acute inhibition of this enzyme without other detectable perturbations of the cell. We found that the catalytic activity of Hog1 is required continuously to prevent cross talk between the HOG pathway and both the pheromone response and invasive growth pathways. Moreover, contrary to previous reports, we found that the kinase activity of Hog1 is necessary for its stress-induced nuclear import. Finally, our results demonstrate a role for active Hog1 in maintaining signaling specificity under conditions of persistently high external osmolarity.  相似文献   

2.
Many different signaling pathways share common components but nevertheless invoke distinct physiological responses. In yeast, the adaptor protein Ste50 functions in multiple mitogen-activated protein (MAP) kinase pathways, each with unique dynamical and developmental properties. Although Kss1 activity is sustained and promotes invasive growth, Hog1 activity is transient and promotes cell adaptation to osmotic stress. Here we show that osmotic stress activates Kss1 as well as Hog1. We show further that Hog1 phosphorylates Ste50 and that phosphorylation of Ste50 limits the duration of Kss1 activation and prevents invasive growth under high osmolarity growth conditions. Thus feedback regulation of a shared component can restrict the activity of a competing MAP kinase to ensure signal fidelity.  相似文献   

3.
4.
Cells respond to environmental stimuli via specialized signaling pathways. Concurrent stimuli trigger multiple pathways that integrate information, predominantly via protein phosphorylation. Budding yeast responds to NaCl and pheromone via two mitogen‐activated protein kinase cascades, the high osmolarity, and the mating pathways, respectively. To investigate signal integration between these pathways, we quantified the time‐resolved phosphorylation site dynamics after pathway co‐stimulation. Using shotgun mass spectrometry, we quantified 2,536 phosphopeptides across 36 conditions. Our data indicate that NaCl and pheromone affect phosphorylation events within both pathways, which thus affect each other at more levels than anticipated, allowing for information exchange and signal integration. We observed a pheromone‐induced down‐regulation of Hog1 phosphorylation due to Gpd1, Ste20, Ptp2, Pbs2, and Ptc1. Distinct Ste20 and Pbs2 phosphosites responded differently to the two stimuli, suggesting these proteins as key mediators of the information exchange. A set of logic models was then used to assess the role of measured phosphopeptides in the crosstalk. Our results show that the integration of the response to different stimuli requires complex interconnections between signaling pathways.  相似文献   

5.
6.
The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal "two-component" system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component-like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen.  相似文献   

7.
8.
9.
BACKGROUND: A common property of signal transduction systems is that they rapidly lose their ability to respond to a given stimulus. For instance in yeast, the mitogen-activated protein (MAP) kinase Hog1 is activated and inactivated within minutes, even when the osmotic-stress stimulus is sustained. RESULTS: Here, we used a combination of experimental and computational analyses to investigate the dynamic behavior of Hog1 activation in vivo. Computational modeling suggested that a negative-feedback loop operates early in the pathway and leads to rapid attenuation of Hog1 signaling. Experimental analysis revealed that the membrane-bound osmosensor Sho1 is phosphorylated by Hog1 and that phosphorylation occurs on Ser-166. Moreover, Sho1 exists in a homo-oligomeric complex, and phosphorylation by Hog1 promotes a transition from the oligomeric to monomeric state. A phosphorylation-site mutation (Sho1(S166E)) diminishes the formation of Sho1-oligomers, dampens activation of the Hog1 kinase, and impairs growth in high-salt or sorbitol conditions. CONCLUSIONS: These findings reveal a novel phosphorylation-dependent feedback loop leading to diminished cellular responses to an osmotic-stress stimulus.  相似文献   

10.
11.
Vohra PK  Puri V  Thomas CF 《FEBS letters》2003,551(1-3):139-146
Mitogen-activated protein kinase (MAPK) pathways transfer environmental signals into intracellular events such as proliferation and differentiation. Fungi utilize a specific pheromone-induced MAPK pathway to regulate conjugation, formation of an ascus, and entry into meiosis. We have previously identified a MAPK, PCM, from the fungal opportunist Pneumocystis, responsible for causing severe pneumonia in patients with AIDS. In order to gain insight into the function of PCM, we expressed it in Saccharomyces cerevisiae deficient in pheromone signaling and tested activation and inhibition of this MAPK pathway. PCM restored pheromone signaling in S. cerevisiae fus3Delta kss1Delta mutants with alpha-factor pheromone (six-fold increase) and was not activated by osmotic stress. Signaling through this pathway decreased 2.5-fold with 10 microM U0126, and was unaffected with SB203580. We evaluated the conditions for native PCM kinase activity isolated from Pneumocystis carinii organisms and found that 0.1 mM MgCl2, pH 6.5, temperature 30-35 degrees C, and 10 microM ATP were optimal. The activity of PCM is significantly elevated in P. carinii trophic forms compared to cysts, implicating a role for PCM in the life cycle transition of P. carinii from trophic forms to cysts.  相似文献   

12.
Caspase 9 is a critical component of the mitochondrial or intrinsic apoptotic pathway and is activated by Apaf-1 following release of cytochrome c from mitochondria in response to a variety of stimuli. Caspase 9 cleaves and activates effector caspases, mainly caspase 3, leading to the demise of the cell. Survival signaling pathways can impinge on this pathway to restrain apoptosis. Here, we have identified Ser144 of human caspase 9as an inhibitory site that is phosphorylated in a cell-free system and in cells in response to the protein phosphatase inhibitor okadaic acid. Inhibitor sensitivity and interactions with caspase 9 indicate that the predominant kinase that targets Ser144 is the atypical protein kinase C isoform zeta (PKCzeta). Prevention of Ser144 phosphorylation by inhibition of PKCzeta or mutation of caspase 9 promotes caspase 3 activation. Phosphorylation of serine 144 in cells is also induced by hyperosmotic stress, which activates PKCzeta and regulates its interaction with caspase 9, but not by growth factors, phorbol ester, or other cellular stresses. These results indicate that phosphorylation and inhibition of caspase 9 by PKCzeta restrain the intrinsic apoptotic pathway during hyperosmotic stress. This work provides further evidence that caspase 9 acts as a focal point for multiple protein kinase signaling pathways that regulate apoptosis.  相似文献   

13.
Haghnazari E  Heyer WD 《DNA Repair》2004,3(7):769-776
The DNA damage checkpoint pathway and the MAP kinase pathway respond to various forms of environmental as well as endogenous stresses through signal transduction mechanisms involving protein kinases. Both pathways are intertwined in mammalian cells, but potential crosstalk between these two pathways in budding yeast has not been examined yet. We show that the Rad53 checkpoint kinase and the Hog1 MAP kinase of Saccharomyces cerevisiae become phosphorylated upon exposure to hydrogen peroxide, indicative of activation of the DNA damage checkpoint and MAP kinase pathways in response to oxidative stress. Rad53 kinase is equally activated in wild type and in hog1-Delta cells. Likewise, the activation of Hog1 MAP kinase is not dependent on Mec1 kinase, the central checkpoint kinase in budding yeast. Mutants in either pathway are sensitive to hydrogen peroxide and the double mutants exhibit a near perfectly additive phenotype. These data demonstrate that the DNA damage checkpoint pathway and the MAP kinase pathway respond to oxidative stress independently of each other and suggest that these two stress signaling pathways are activated by different types of insults induced by hydrogen peroxide.  相似文献   

14.
15.
 高渗透性甘油促分裂原激酶信号转导途径(high osmolarity glycerol mitogen activated protein kinase signaling transduction pathway,HOG-MAPK)是调控酿酒酵母对外界高渗透压胁迫环境应答的主要途径,促分裂原蛋白激酶Hog1p(MAPK Hog1p)是其中的关键性作用因子.在高渗透压刺激时,MAPK Hog1p接受信号被特异性激活并进入核内,调控相关胁迫应答基因的表达,并介导该时期细胞周期的阻滞,从而增强细胞对外界不利环境的适应能力.对胁迫条件下酿酒酵母中MAPK Hog1p作用机制的进一步研究,有利于更深入地了解哺乳动物体内逆境激发促分裂原蛋白激酶途径的功能和调控机制.  相似文献   

16.
17.
Many ligand-independent receptor tyrosine kinases are tumorigenic. The biochemical signals that mediate ligand-independent transformation of cells by these transmembrane receptors are poorly defined. In this report, we demonstrate that a constitutively activated mutant epidermal growth factor receptor (v-ErbB) induces the formation of a transformation-specific signaling module that complexes with myosin II. The components of this signaling complex include the signal adapter proteins Shc, Grb2, and Nck, and tyrosine-phosphorylated forms of p21-activated kinase (Pak), caldesmon, and myosin light chain kinase. Transformation-specific, tyrosine phosphorylation of Pak enhances the catalytic activity of this serine/threonine kinase. Furthermore, the tyrosine phosphorylation of Pak is Rho-, but not Ras-, Rac-, or Cdc42-dependent. These results demonstrate that a ligand-independent epidermal growth factor receptor mutant can transduce oncogenic signals that are distinct from ligand-dependent, mitogenic signals. In addition, these data provide evidence for the coupling of oncogenic receptor tyrosine kinases with the actomyosin molecular motor. This myosin-associated signaling module may mediate some of the biochemical changes of myosin found in v-ErbB- transformed fibroblasts, thereby contributing to the regulation of the mechanical forces governing cellular adhesion, cytoskeletal tension, and, hence, anchorage-independent cell growth.  相似文献   

18.
The Hog1 mitogen-activated protein kinase (MAPK) plays a central role in stress responses in the human pathogen Candida albicans. Here, we have investigated the MAPK kinase kinase (MAPKKK)-dependent regulation of the pathway. In contrast to the Hog1 pathway in Saccharomyces cerevisiae, which is regulated by three MAPKKKs (Ssk2, Ssk22, and Ste11), our results demonstrate that Hog1 in C. albicans is regulated by a single MAPKKK Ssk2. Deletion of SSK2 results in comparable stress and morphological phenotypes exhibited by hog1Delta cells, and Ssk2 is required for the stress-induced phosphorylation and nuclear accumulation of Hog1, and for Hog1-dependent gene expression. Furthermore, phenotypes associated with deletion of SSK2 can be circumvented by expression of a phosphomimetic mutant of the MAPKK Pbs2, indicating that Ssk2 regulates Hog1 via activation of Pbs2. In S. cerevisiae, the Hog1 pathway is also regulated by the MAPKKK Ste11. However, we can find no connection between Ste11 and the regulation of Hog1 in C. albicans. Furthermore, expression of a chimeric Pbs2 protein containing the Ste11-dependent regulatory region of S. cerevisiae Pbs2, fails to stimulate Ste11-dependent stress signaling in C. albicans. Collectively, our data show that Ssk2 is the sole MAPKKK to relay stress signals to Hog1 in C. albicans and that the MAPK signaling network in C. albicans has diverged significantly from the corresponding network in S. cerevisiae.  相似文献   

19.
G M Cole  S I Reed 《Cell》1991,64(4):703-716
The mating pheromone response in S. cerevisiae is activated by a G protein-mediated signaling pathway in which G beta gamma is the active transducer of the signal. When exogenous pheromone is added to vegetatively growing cells, G beta is rapidly phosphorylated at several sites; phosphorylation does not require de novo protein synthesis. A mutation in G beta was constructed that eliminates signal-induced phosphorylation. This mutation leads to enhanced sensitivity to and impaired ability to recover from pheromone, but does not affect the ability of G beta gamma to transmit the mating signal. These phenotypes suggest that G protein phosphorylation mediates an adaptive response to pheromone-induced signaling. G beta phosphorylation does not require either the pheromone receptor C-terminus or the product of the SST2 gene, both of which mediate separate adaptive responses to pheromone. However, G beta phosphorylation is greatly facilitated by the presence of the G alpha subunit, which has also been shown to participate in an adaptation to pheromone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号