首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Wide cross and molecular cytogenetic methods were used to transfer the powdery mildew resistance gene from Thinopyron intermedium (Host) Barkworth & DR Dewey to wheat. Among the progeny of crossing common wheat (Triticum aestivum L.) Yannong 15 with Th. intermedium, a partial amphiploid E990256, with resistance to powdery mildew, was developed. It had 56 chromosomes and could form 28bivalents in pollen mother cells at metaphase I of meiosis. Resistance verification by race 15 at the seedling stage and by mixed strains of Erysiphales gramnis DC. f. sp. tritici Em. Marchal at the adult stage showed it was immune to powdery mildew at both stages. Gene postulation via 21 isolates of E. gramnis f. sp. tritici and 29 differential hosts showed it was nearly immune to all the isolates used, and its resistance pattem was different from all the mildew resistance genes used, which indicated it probably contained a new resistance gene to powdery mildew. Biochemical verification showed it might convey different Th. intermedium chromosomes from those of the wheat-Th. intermedium partial amphiploids Zhong 1-5. Genomic in situ hybridization analysis by using St genomic DNA as the probe showed E990256 contained a recombination genome of St and E.  相似文献   

2.
A single nucleotide polymorphism in the wheat powdery mildew (Blumeria graminis f. sp. tritici) cytochrome b gene is responsible for resistance to inhibitors of the quinol outer binding site of the cytochrome bc1 complex (QoI) fungicides. Analysis of a partial sequence of the cytochrome b gene from field isolates resistant and sensitive to QoI fungicides revealed the same point mutation in barley powdery mildew (B. graminis f. sp. hordei). Analysis of 118 and 40 barley powdery mildew isolates using a cleaved amplified polymorphic sequence assay and denaturing high performance liquid chromatography, respectively, confirmed that this single nucleotide polymorphism also confers resistance to QoI fungicides in barley powdery mildew.  相似文献   

3.
Powdery mildew, caused by Blumeria graminis f. sp. tritici is a major disease of wheat (Triticum aestivum L.) that can be controlled by resistance breeding. The CIMMYT bread wheat line Saar is known for its good level of partial and race non-specific resistance, and the aim of this study was to map QTLs for resistance to powdery mildew in a population of 113 recombinant inbred lines from a cross between Saar and the susceptible line Avocet. The population was tested over 2 years in field trials at two locations in southeastern Norway and once in Beijing, China. SSR markers were screened for association with powdery mildew resistance in a bulked segregant analysis, and linkage maps were created based on selected SSR markers and supplemented with DArT genotyping. The most important QTLs for powdery mildew resistance derived from Saar were located on chromosomes 7DS and 1BL and corresponded to the adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29. A major QTL was also located on 4BL with resistance contributed by Avocet. Additional QTLs were detected at 3AS and 5AL in the Norwegian testing environments and at 5BS in Beijing. The population was also tested for leaf rust (caused by Puccinia triticina) and stripe rust (caused by P. striiformis f. sp. tritici) resistance and leaf tip necrosis in Mexico. QTLs for these traits were detected on 7DS and 1BL at the same positions as the QTLs for powdery mildew resistance, and confirmed the presence of Lr34/Yr18 and Lr46/Yr29 in Saar. The powdery mildew resistance gene at the Lr34/Yr18 locus has recently been named Pm38. The powdery mildew resistance gene at the Lr46/Yr29 locus is designated as Pm39.  相似文献   

4.
Genomic in situ hybridization (GISH) and multicolor GISH (mcGISH) methodology were used to establish the cytogenetic constitution of five partial amphiploid lines obtained from wheat × Thinopyrum intermedium hybridizations. Line Zhong 1, 2n=52, contained 14 chromosomes from each of the wheat genomes plus ten Th. intermedium chromosomes, with one pair of A-genome chromosomes having a Th. intermedium chromosomal segment translocated to the short arm. Line Zhong 2, 2n=54, had intact ABD wheat genome chromosomes plus 12 Th. intermedium chromosomes. The multicolor GISH results, using different fluorochrome labeled Th. intermedium and the various diploid wheat genomic DNAs as probes, indicated that both Zhong 1 and Zhong 2 contained one pair of Th. intermedium chromosomes with a significant homology to the wheat D genome. High-molecular-weight (HMW) glutenin and gliadin analysis revealed that Zhong 1 and Zhong 2 had identical banding patterns that contained all of the wheat bands and a specific HMW band from Th. intermedium. Zhong 1 and Zhong 2 had good HMW subunits for wheat breeding. Zhong 3 and Zhong 5, both 2n=56, possessed no gross chromosomal aberrations or translocations that were detectable at the GISH level. Zhong 4 also had a chromosome number of 2n=56 and contained the complete wheat ABD-genome chromosomes plus 14 Th. intermedium chromosomes, with one pair of Th. intermedium chromosomes being markedly smaller. Multicolor GISH results indicated that Zhong 4 also contained two pairs of reciprocally translocated chromosomes involving the A and D genomes. Zhong 3, Zhong 4 and Zhong 5 contained a specific gliadin band from Th. intermedium. Based on the above data, it was concluded that inter-genomic transfer of chromosomal segments and/or sequence introgression had occurred in these newly synthesized partial amphiploids despite their diploid-like meiotic behavior and disomic inheritance.  相似文献   

5.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   

6.
In situ hybridization (multicolor GISH and FISH) was used to characterize the genomic composition of the wheat–Thinopyrum ponticum partial amphiploid BE-1. The amphiploid is a high-protein line having resistance to leaf rust (Puccinia recondita f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) and has in total 56 chromosomes per cell. Multicolor GISH using J, A and D genomic probes showed 16 chromosomes originating from Thinopyrum ponticum and 14 A genome, 14 B genome and 12 D genome chromosomes. Six of the Th. ponticum chromosomes carried segments different from the J genome in their centromeric regions. It was demonstrated that these alien chromosome segments did not originate from the A, B or D genomes of wheat, so the translocation chromosomes were considered to be Js type chromosomes carrying segments similar to the S genome near the centromeres. Rearrangements between the A and D genomes of wheat were detected. FISH using Afa family, pSc119.2 and pTa71 probes allowed the identification of all the wheat chromosomes present and the determination of the chromosomes involved in the translocations. The 4A and 7A chromosomes were identified as being involved in intergenomic translocations. The replaced wheat chromosome was identified as 7D. The localization of these repetitive DNA clones on the Th. ponticum chromosomes of the amphiploid was described in the present study. On the basis of their multicolor FISH patterns, the alien chromosomes could be arranged in eight pairs and could also be differentiated unequivocally from each other.  相似文献   

7.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases worldwide. Pyramiding different resistance genes into single cultivar has been proposed as one remedy to provide durable resistance. Powdery mildew resistance genes Pm12 (T6BS-6SS.6SL), transferred from Aegilops speltoides to wheat cv. Wembley, and Pm21 (T6VS.6AL), introduced from Dasypyrum villosum to wheat cv. Yangmai5, conferred broad-spectrum resistance to B. graminis f. sp. tritici. Both Pm12 and Pm21 genes are located on the short arms of homologous group six involved translocated chromosomes 6SS.6BL and 6VS.6AL, respectively. Simple sequence repeat motifs of wheat simple sequence repeat (SSR) and expressed sequence tag (EST) sequences on the short arm of homologous group six chromosomes were analyzed to develop molecular markers for discriminating chromosome arms 6AS, 6BS, 6DS, 6VS, and 6SS. One EST–SSR marker, Xcau127, was polymorphic, and therefore can be used to distinguish the two resistance genes and the respective susceptible alleles. This marker allowed us to develop an efficient “one-marker-for-two-genes” procedure for identifying powdery mildew resistance genes Pm12 and Pm21 for marker-assisted selection and gene pyramiding in wheat breeding programs. Wei Song and Chaojie Xie contributed equally to this work  相似文献   

8.
Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome‐editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock‐down of TaEDR1 by virus‐induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off‐target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew‐induced cell death. Our study represents the successful generation of a potentially valuable trait using genome‐editing technology in wheat and provides germplasm for disease resistance breeding.  相似文献   

9.
Rye (Secale cereale L.) possesses many valuable genes that can be used for improving disease resistance, yield and environment adaptation of wheat (Triticum aestivum L.). However, the documented resistance stocks derived from rye is faced severe challenge due to the variation of virulent isolates in the pathogen populations. Therefore, it is necessary to develop desirable germplasm and search for novel resistance gene sources against constantly accumulated variation of the virulent isolates. In the present study, a new wheat-rye line designated as WR49-1 was produced through distant hybridization and chromosome engineering protocols between common wheat cultivar Xiaoyan 6 and rye cultivar German White. Using sequential GISH (genomic in situ hybridization), mc-FISH (multicolor fluorescence in situ hybridization), mc-GISH (multicolor GISH) and EST (expressed sequence tag)-based marker analysis, WR49-1 was proved to be a new wheat-rye 6R disomic addition line. As expected, WR49-1 showed high levels of resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici, Bgt) pathogens prevalent in China at the adult growth stage and 19 of 23 Bgt isolates tested at the seedling stage. According to its reaction pattern to different Bgt isolates, WR49-1 may possess new resistance gene(s) for powdery mildew, which differed from the documented powdery mildew gene, including Pm20 on chromosome arm 6RL of rye. Additionally, WR49-1 was cytologically stable, had improved agronomic characteristics and therefore could serve as an important bridge for wheat breeding and chromosome engineering.  相似文献   

10.
Fluorescence and genomic in situ hybridization (FISH and GISH) were used to establish the cytogenetic constitution of two wheat × Thinopyrum intermedium partial amphiploids H95 and 55(1-57). Both partial amphiploids are high-protein lines having resistance to leaf rust, yellow rust and powdery mildew and have in total 56 chromosomes per cell. Repetitive DNA probes (pTa71, Afa family and pSc119.2) were used to identify the individual wheat chromosomes and to reveal the distribution of these probes within the alien chromosomes. FISH detected 6B tetrasomy in H95 and a null (1D)-tetrasomy (1B) in 55(1-57). GISH was carried out using biotin labeled Th. intermedium DNA and digoxigenin labeled Pseudoroegneria spicata DNA as probes, subsequently. GISH results revealed 44 wheat chromosomes and four Thinopyrum chromosome pairs, including three S and one J chromosome pairs in line H95. Line 55(1-57), contained 42 wheat chromosomes and six Th. intermedium pairs, including two S and one JS pairs. Additionally, two identical translocated chromosome pairs with diminished affinity to the alien chromatin were detected in both amphiploids. Another two translocations were found in 55(1-57), with satellite sections from the Thinopyrum J genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号