首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure-function relationship of CAP-Gly domains   总被引:1,自引:0,他引:1  
In all eukaryotes, CAP-Gly proteins control important cellular processes. The molecular mechanisms underlying the functions of CAP-Gly domains, however, are still poorly understood. Here we use the complex formed between the CAP-Gly domain of p150(glued) and the C-terminal zinc knuckle of CLIP170 as a model system to explore the structure-function relationship of CAP-Gly-mediated protein interactions. We demonstrate that the conserved GKNDG motif of CAP-Gly domains is responsible for targeting to the C-terminal EEY/F sequence motifs of CLIP170, EB proteins and microtubules. The CAP-Gly-EEY/F interaction is essential for the recruitment of the dynactin complex by CLIP170 and for activation of CLIP170. Our findings define the molecular basis of CAP-Gly domain function, including the tubulin detyrosination-tyrosination cycle. They further establish fundamental roles for the interaction between CAP-Gly proteins and C-terminal EEY/F sequence motifs in regulating complex and dynamic cellular processes.  相似文献   

2.
Microtubule-associated proteins (MAPs) use particular microtubule-binding domains that allow them to interact with microtubules in a manner specific to their individual cellular functions. Here, we have identified a highly basic microtubule-binding domain in the p150 subunit of dynactin that is only present in the dynactin members of the CAP-Gly family of proteins. Using single-particle microtubule-binding assays, we found that the basic domain of dynactin moves progressively along microtubules in the absence of molecular motors - a process we term 'skating'. In contrast, the previously described CAP-Gly domain of dynactin remains firmly attached to a single point on microtubules. Further analyses showed that microtubule skating is a form of one-dimensional diffusion along the microtubule. To determine the cellular function of the skating phenomenon, dynein and the dynactin microtubule-binding domains were examined in single-molecule motility assays. We found that the basic domain increased dynein processivity fourfold whereas the CAP-Gly domain inhibited dynein motility. Our data show that the ability of the basic domain of dynactin to skate along microtubules is used by dynein to maintain longer interactions for each encounter with microtubules.  相似文献   

3.
肿瘤抑制因子(cylindromatosis,CYLD)是一种在体内广泛分布的去泛素酶,其包含去泛素化酶结构域和富含甘氨酸细胞骨架相关蛋白结构域,前者可通过去泛素化信号分子,调控细胞信号传导途径,后者主要通过对微管的调节,改变多聚化和乙酰化过程,进而调控其组装和排列。CYLD主要通过对信号传导和细胞骨架的调节,从而调控细胞增殖、细胞凋亡、细胞运动和细胞分化等细胞功能。该文对近年来肿瘤抑制因子CYLD对细胞功能调控的研究进行概述。  相似文献   

4.
Key interaction modes of dynamic +TIP networks   总被引:1,自引:0,他引:1  
Dynamic microtubule plus-end tracking protein (+TIP) networks are implicated in all functions of microtubules, but the molecular determinants of their interactions are largely unknown. Here, we have explored key binding modes of +TIPs by analyzing the interactions between selected CAP-Gly, EB-like, and carboxy-terminal EEY/F-COO(-) sequence motifs. X-ray crystallography and biophysical binding studies demonstrate that the beta2-beta3 loop of CAP-Gly domains determines EB-like motif binding specificity. They further show how CAP-Gly domains serve as recognition domains for EEY/F-COO(-) motifs, which represent characteristic and functionally important sequence elements in EB, CLIP-170, and alpha-tubulin. Our findings provide a molecular basis for understanding the modular interaction modes between alpha-tubulin, CLIPs, EB proteins, and the dynactin-dynein motor complex and suggest that multiple low-affinity binding sites in different combinations control dynamic +TIP networks at microtubule ends. They further offer insights into the structural consequences of genetic CAP-Gly domain defects found in severe human disorders.  相似文献   

5.
Cylindromatosis (CYLD), a deubiquitinase involved in inflammation and tumorigenesis via the modulation of cell signaling, has recently been identified as a critical regulator of microtubule dynamics. CYLD has also been shown to stimulate cell migration and thereby contribute to normal physiological processes. However, it remains elusive how the regulation of microtubule dynamic properties by CYLD is connected to its role in mediating cell migration. In this study, we performed yeast 2-hybrid screening with CYLD as bait and identified 7 CYLD-interacting proteins, including end-binding protein 1 (EB1). The CYLD–EB1 interaction was confirmed both in cells and in vitro, and these 2 proteins colocalized at the plus ends of microtubules. Interestingly, the association of CYLD with EB1 was significantly increased upon the stimulation of cell migration. CYLD coordinated with EB1 to orchestrate tail retraction, centrosome reorientation, and leading-edge microtubule stabilization in migratory cells. In addition, CYLD acted in concert with EB1 to regulate microtubule assembly in vitro, microtubule nucleation at the centrosome, and microtubule growth at the cell periphery. These data provide mechanistic insights into the actions of CYLD in the regulation of microtubule dynamics and cell migration. These findings also support the notion that coordinated actions of microtubule-binding proteins are critical for microtubule-mediated cellular events.  相似文献   

6.
Tubulin-tyrosine ligase (TTL), the enzyme that catalyzes the addition of a C-terminal tyrosine residue to alpha-tubulin in the tubulin tyrosination cycle, is involved in tumor progression and has a vital role in neuronal organization. We show that in mammalian fibroblasts, cytoplasmic linker protein (CLIP) 170 and other microtubule plus-end tracking proteins comprising a cytoskeleton-associated protein glycine-rich (CAP-Gly) microtubule binding domain such as CLIP-115 and p150 Glued, localize to the ends of tyrosinated microtubules but not to the ends of detyrosinated microtubules. In vitro, the head domains of CLIP-170 and of p150 Glued bind more efficiently to tyrosinated microtubules than to detyrosinated polymers. In TTL-null fibroblasts, tubulin detyrosination and CAP-Gly protein mislocalization correlate with defects in both spindle positioning during mitosis and cell morphology during interphase. These results indicate that tubulin tyrosination regulates microtubule interactions with CAP-Gly microtubule plus-end tracking proteins and provide explanations for the involvement of TTL in tumor progression and in neuronal organization.  相似文献   

7.
Hayashi I  Wilde A  Mal TK  Ikura M 《Molecular cell》2005,19(4):449-460
Plus-end tracking proteins, such as EB1 and the dynein/dynactin complex, regulate microtubule dynamics. These proteins are thought to stabilize microtubules by forming a plus-end complex at microtubule growing ends with ill-defined mechanisms. Here we report the crystal structure of two plus-end complex components, the carboxy-terminal dimerization domain of EB1 and the microtubule binding (CAP-Gly) domain of the dynactin subunit p150Glued. Each molecule of the EB1 dimer contains two helices forming a conserved four-helix bundle, while also providing p150Glued binding sites in its flexible tail region. Combining crystallography, NMR, and mutational analyses, our studies reveal the critical interacting elements of both EB1 and p150Glued, whose mutation alters microtubule polymerization activity. Moreover, removal of the key flexible tail from EB1 activates microtubule assembly by EB1 alone, suggesting that the flexible tail negatively regulates EB1 activity. We, therefore, propose that EB1 possesses an auto-inhibited conformation, which is relieved by p150Glued as an allosteric activator.  相似文献   

8.
Microtubule dynamics is regulated by an array of microtubule associated proteins of which the microtubule plus-end tracking proteins (+TIPs) are prominent examples. +TIPs form dynamic interaction networks at growing microtubule ends in an EB1-dependent manner. The interaction between the C-terminal domain of EB1 and the CAP-Gly domains of the +TIP CLIP-170 depends on the last tyrosine residue of EB1. In the present study, we generated peptidic probes corresponding to the C-terminal tail of EB1 to affinity-capture binding partners from cell lysates. Using an MS-based approach, we showed that the last 15 amino-acid residues of EB1, either free or immobilized on beads, bound recombinant CAP-Gly domains of CLIP-170. We further demonstrate that this binding was prevented when the C-terminal tyrosine of EB1 was absent in the peptidic probes. Western blotting in combination with a label-free quantitative proteomic analysis revealed that the peptidic probe harboring the C-terminal tyrosine of EB1 effectively pulled-down proteins with CAP-Gly domains from endothelial cell extracts. Additional proteins known to interact directly or indirectly with EB1 and the microtubule cytoskeleton were also identified. Our peptidic probes represent valuable tools to detect changes induced in EB1-dependent +TIP networks by external cues such as growth factors and small molecules.  相似文献   

9.
Capturing protein tails by CAP-Gly domains   总被引:2,自引:0,他引:2  
Cytoskeleton-associated protein-glycine-rich (CAP-Gly) domains are protein-interaction modules implicated in important cellular processes and in hereditary human diseases. A prominent function of CAP-Gly domains is to bind to C-terminal EEY/F-COO(-) sequence motifs present in alpha-tubulin and in some microtubule-associated protein tails; however, CAP-Gly domains also interact with other structural elements including end-binding homology domains, zinc-finger motifs and proline-rich sequences. Recent findings unravelled the link between tubulin tyrosination and CAP-Gly-protein recruitment to microtubules. They further provided a molecular basis for understanding the role of CAP-Gly domains in controlling dynamic cellular processes including the tracking and regulation of microtubule ends. It is becoming increasingly clear that CAP-Gly domains are also involved in coordinating complex and diverse aspects of cell architecture and signalling.  相似文献   

10.
CYLD was originally identified as the human familial cylindromatosis tumor suppressor. Recently, it was reported that CYLD directly interacts with NEMO/IKKgamma and TRAF2 in the NF-kappaB signaling pathway. The two proteins bind to a region of CYLD that contains a Cys-box motif and the third cytoskeleton-associated protein-glycine conserved (CAP-Gly) domain. Here we report that the third CAP-Gly domain of CYLD specifically interacts with one of the two proline-rich sequences of NEMO/IKKgamma. The tertiary structure of the CAP-Gly domain shares the five-stranded beta sheet topology with the SH3 domain, which is well known as a proline-rich sequence-recognition domain. However, chemical shift mapping revealed that the peptide binding site of the CAP-Gly domain is formed without the long peptide binding loop characteristic of the SH3 domain. Therefore, CAP-Gly is likely to be a novel proline-rich sequence binding domain with a mechanism different from that of the SH3 domain.  相似文献   

11.
Regulation of microtubule dynamics in neurons is critical, as defects in the microtubule-based transport of axonal organelles lead to neurodegenerative disease. The microtubule motor cytoplasmic dynein and its partner complex dynactin drive retrograde transport from the distal axon. We have recently shown that the p150Glued subunit of dynactin promotes the initiation of dynein-driven cargo motility from the microtubule plus-end. Because plus end-localized microtubule-associated proteins like p150Glued may also modulate the dynamics of microtubules, we hypothesized that p150Glued might promote cargo initiation by stabilizing the microtubule track. Here, we demonstrate in vitro using assembly assays and TIRF microscopy, and in primary neurons using live-cell imaging, that p150Glued is a potent anti-catastrophe factor for microtubules. p150Glued alters microtubule dynamics by binding both to microtubules and to tubulin dimers; both the N-terminal CAP-Gly and basic domains of p150Glued are required in tandem for this activity. p150Glued is alternatively spliced in vivo, with the full-length isoform including these two domains expressed primarily in neurons. Accordingly, we find that RNAi of p150Glued in nonpolarized cells does not alter microtubule dynamics, while depletion of p150Glued in neurons leads to a dramatic increase in microtubule catastrophe. Strikingly, a mutation in p150Glued causal for the lethal neurodegenerative disorder Perry syndrome abrogates this anti-catastrophe activity. Thus, we find that dynactin has multiple functions in neurons, both activating dynein-mediated retrograde axonal transport and enhancing microtubule stability through a novel anti-catastrophe mechanism regulated by tissue-specific isoform expression; disruption of either or both of these functions may contribute to neurodegenerative disease.  相似文献   

12.
Spindle assembly and accurate chromosome segregation require the proper regulation of microtubule dynamics. MCAK, a Kinesin-13, catalytically depolymerizes microtubules, regulates physiological microtubule dynamics, and is the major catastrophe factor in egg extracts. Purified GFP-tagged MCAK domain mutants were assayed to address how the different MCAK domains contribute to in vitro microtubule depolymerization activity and physiological spindle assembly activity in egg extracts. Our biochemical results demonstrate that both the neck and the C-terminal domain are necessary for robust in vitro microtubule depolymerization activity. In particular, the neck is essential for microtubule end binding, and the C-terminal domain is essential for tight microtubule binding in the presence of excess tubulin heterodimer. Our physiological results illustrate that the N-terminal domain is essential for regulating microtubule dynamics, stimulating spindle bipolarity, and kinetochore targeting; whereas the C-terminal domain is necessary for robust microtubule depolymerization activity, limiting spindle bipolarity, and enhancing kinetochore targeting. Unexpectedly, robust MCAK microtubule (MT) depolymerization activity is not needed for sperm-induced spindle assembly. However, high activity is necessary for proper physiological MT dynamics as assayed by Ran-induced aster assembly. We propose that MCAK activity is spatially controlled by an interplay between the N- and C-terminal domains during spindle assembly.  相似文献   

13.
End binding proteins (EBs) track growing microtubule ends and play a master role in organizing dynamic protein networks. Mammalian cells express up to three different EBs (EB1, EB2, and EB3). Besides forming homodimers, EB1 and EB3 also assemble into heterodimers. One group of EB-binding partners encompasses proteins that harbor CAP-Gly domains. The binding properties of the different EBs towards CAP-Gly proteins have not been systematically investigated. This information is, however, important to compare and contrast functional differences. Here we analyzed the interactions between CLIP-170 and p150(glued) CAP-Gly domains with the three EB homodimers and the EB1-EB3 heterodimer. Using isothermal titration calorimetry we observed that some EBs bind to the individual CAP-Gly domains with similar affinities while others interact with their targets with pronounced differences. We further found that the two types of CAP-Gly domains use alternative mechanisms to target the C-terminal domains of EBs. We succeeded to solve the crystal structure of a complex composed of a heterodimer of EB1 and EB3 C-termini together with the CAP-Gly domain of p150(glued). Together, our results provide mechanistic insights into the interaction properties of EBs and offer a molecular framework for the systematic investigation of their functional differences in cells.  相似文献   

14.
Kinesin-5, a widely conserved motor protein required for assembly of the bipolar mitotic spindle in eukaryotes, forms homotetramers with two pairs of motor domains positioned at opposite ends of a dumbbell-shaped molecule [1-3]. It has long been assumed that this configuration of motor domains is the basis of kinesin-5's ability to drive relative sliding of microtubules [2, 4, 5]. Recently, it was suggested that in addition to the N-terminal motor domain, kinesin-5 also has a nonmotor microtubule binding site in its C terminus [6]. However, it is not known how the nonmotor domain contributes to motor activity, or how a kinesin-5 tetramer utilizes a combination of four motor and four nonmotor microtubule binding sites for its microtubule organizing functions. Here we show, in single molecule assays, that kinesin-5 homotetramers require the nonmotor C terminus for crosslinking and relative sliding of two microtubules. Remarkably, this domain enhances kinesin-5's microtubule binding without substantially reducing motor activity. Our?results suggest that tetramerization of kinesin-5's low-processivity motor domains is not sufficient for microtubule sliding because the motor domains alone are unlikely to?maintain persistent microtubule crosslinks. Rather, kinesin-5 utilizes nonmotor microtubule binding sites to tune its microtubule attachment dynamics, enabling it to efficiently align and sort microtubules during metaphase spindle assembly and function.  相似文献   

15.
Microtubule plus-end proteins CLIP-170 and EB1 dynamically track the tips of growing microtubules in vivo. Here we examine the association of these proteins with microtubules in vitro. CLIP-170 binds tubulin dimers and co-assembles into growing microtubules. EB1 binds tubulin dimers more weakly, so no co-assembly is observed. However, EB1 binds to CLIP-170, and forms a co-complex with CLIP-170 and tubulin that is recruited to growing microtubule plus ends. The interaction between CLIP-170 and EB1 is competitively inhibited by the related CAP-Gly protein p150Glued, which also localizes to microtubule plus ends in vivo. Based on these observations, we propose a model in which the formation of distinct plus-end complexes may differentially affect microtubule dynamics in vivo.  相似文献   

16.
Mitotic spindle assembly requires the regulated activity of numerous spindle-associated proteins. In mammalian cells, the Kinesin-5 motor Eg5 interacts with the spindle assembly factor TPX2, but how this interaction contributes to spindle formation and function is not established. Using bacterial artificial chromosome technology, we generated cells expressing TPX2 lacking the Eg5 interaction domain. Spindles in these cells were highly disorganized with multiple spindle poles. The TPX2-Eg5 interaction was required for kinetochore fiber formation and contributed to Eg5 localization to spindle microtubules but not spindle poles. Microinjection of the Eg5-binding domain of TPX2 resulted in spindle elongation, indicating that the interaction of Eg5 with TPX2 reduces motor activity. Consistent with this possibility, we found that TPX2 reduced the velocity of Eg5-dependent microtubule gliding, inhibited microtubule sliding, and resulted in the accumulation of motor on microtubules. These results establish a novel function of TPX2 in regulating the location and activity of the mitotic motor Eg5.  相似文献   

17.
Moughamian AJ  Holzbaur EL 《Neuron》2012,74(2):331-343
Dynactin is a required cofactor for the minus-end-directed microtubule motor cytoplasmic dynein. Mutations within the highly conserved CAP-Gly domain of dynactin cause neurodegenerative disease. Here, we show that the CAP-Gly domain is necessary to enrich dynactin at the distal end of primary neurons. While the CAP-Gly domain is not required for sustained transport along the axon, we find that the distal accumulation facilitates the efficient initiation of retrograde vesicular transport from the neurite tip. Neurodegenerative disease mutations in the CAP-Gly domain prevent the distal enrichment of dynactin thereby inhibiting the initiation of retrograde transport. Thus, we propose a model in which distal dynactin is a key mediator in promoting the interaction among the microtubule, dynein motor, and cargo for the efficient initiation of transport. Mutations in?the CAP-Gly domain disrupt the formation of the?motor-cargo complex, highlighting the specific defects in axonal transport that may lead to neurodegeneration.  相似文献   

18.
We previously demonstrated (Ookata et al., 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule- associated proteins (MAPs) might be responsible for this interaction. In this study, we have investigated the mechanism by which p34cdc2 kinase associates with the microtubule cytoskeleton in primate tissue culture cells whose major MAP is known to be MAP4. Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. Detergent extraction before fixation removed cyclin B as well as MAP4 from the microtubules. Depolymerization of some of the cellular microtubules with nocodazole preferentially retained the microtubule localization of both cyclin B and MAP4. The association of p34cdc2/cyclin B kinase with microtubules was also shown biochemically to be mediated by MAP4. Cosedimentation of purified p34cdc2/cyclin B with purified microtubule proteins containing MAP4, but not with MAP-free microtubules, as well as binding of MAP4 to GST-cyclin B fusion proteins, demonstrated an interaction between cyclin B and MAP4. Using recombinant MAP4 fragments, we demonstrated that the Pro-rich C-terminal region of MAP4 is sufficient to mediate the cyclin B-MAP4 interaction. Since p34cdc2/cyclin B physically associated with MAP4, we examined the ability of the kinase complex to phosphorylate MAP4. Incubation of a ternary complex of p34cdc2, cyclin B, and the COOH-terminal domain of MAP4, PA4, with ATP resulted in intracomplex phosphorylation of PA4. Finally, we tested the effects of MAP4 phosphorylation on microtubule dynamics. Phosphorylation of MAP4 by p34cdc2 kinase did not prevent its binding to microtubules, but abolished its microtubule stabilizing activity. Thus, the cyclin B/MAP4 interaction we have described may be important in targeting the mitotic kinase to appropriate cytoskeletal substrates, for the regulation of spindle assembly and dynamics.  相似文献   

19.
The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414–530) and CC2 (aa 530–630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.  相似文献   

20.
Microtubule-binding proteins are a group of molecules that associate with microtubules, regulate the structural properties of microtubules, and thereby participate in diverse microtubule-mediated cellular activities. A recent mass spectrometry-based proteomic study has identified microtubule-associated protein 7 (MAP7) domain-containing 3 (Mdp3) as a potential microtubule-binding protein. However, its subcellular localization and functional importance are not characterized. In this study, by GST-pulldown assays, we found that Mdp3 interacted with tubulin both in cells and in vitro. Immunofluorescence microscopy and microtubule cosedimentation assays revealed that Mdp3 also associated with microtubules. Serial deletion experiments showed that the two coiled coil motifs of Mdp3 were critical for its interaction with tubulin and microtubules. Cold recovery and nocodazole washout assays further demonstrated an important role for Mdp3 in regulating cellular microtubule assembly. Our data also showed that Mdp3 significantly enhanced the stability of cellular microtubules. By tubulin turbidity assay, we found that Mdp3 could promote microtubule assembly and stability in the purified system. In addition, we found that Mdp3 expression varied during the cell cycle and in primary tissues. These findings thus establish Mdp3 as a novel microtubule-binding protein that regulates microtubule assembly and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号