首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Significant attention has been given to the way in which the soil nitrogen (N) cycle responds to permafrost thaw in recent years, yet little is known about anaerobic N transformations in thermokarst lakes, which account for more than one-third of thermokarst landforms across permafrost regions. Based on the N isotope dilution and tracing technique, combined with qPCR and high-throughput sequencing, we presented large-scale measurements of anaerobic N transformations of sediments across 30 thermokarst lakes over the Tibetan alpine permafrost region. Our results showed that gross N mineralization, ammonium immobilization, and dissimilatory nitrate reduction rates in thermokarst lakes were higher in the eastern part of our study area than in the west. Denitrification dominated in the dissimilatory nitrate reduction processes, being two and one orders of magnitude higher than anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA), respectively. The abundances of the dissimilatory nitrate reduction genes (nirK, nirS, hzsB, and nrfA) exhibited patterns consistent with sediment N transformation rates, while α diversity did not. The inter-lake variability in gross N mineralization and ammonium immobilization was dominantly driven by microbial biomass, while the variability in anammox and DNRA was driven by substrate supply and organic carbon content, respectively. Denitrification was jointly affected by nirS abundance and organic carbon content. Overall, the patterns and drivers of anaerobic N transformation rates detected in this study provide a new perspective on potential N release, retention, and removal upon the formation and development of thermokarst lakes.  相似文献   

2.
Carbon (C) inputs and nutrient availability are known to affect soil organic carbon (SOC) stocks. However, general rules regarding the operation of these factors across a range of soil nutrient availabilities and substrate qualities are unidentified. “Priming” (stimulated decomposition by labile C inputs) and ‘preferential substrate utilization’ (retarded decomposition due to shifts in community composition towards microbes that do not mineralize SOC) are two hypotheses to explain effects of labile C additions on SOC dynamics. For effects of nutrient additions (nitrogen and phosphorus) on SOC dynamics, the stoichiometric (faster decomposition of materials of low carbon-to-nutrient ratios) and ‘microbial mining’ (that is, reduced breakdown of recalcitrant C forms for nutrients under fertile conditions) hypotheses have been proposed. Using the natural gradient of soil nutrient availability and substrate quality of a chronosequence, combined with labile C and nutrient amendments, we explored the support for these contrasting hypotheses. Additions of labile C, nitrogen (N), phosphorus (P), and combinations of C and N and C and P were applied to three sites: 2-year fallow grassland, mature grassland and forest, and the effects of site and nutrient additions on litter decomposition and soil C dynamics were assessed. The response to C addition supported the preferential substrate hypothesis for easily degradable litter C and the priming hypothesis for SOC, but only in nitrogen-enriched soils of the forest site. Responses to N addition supported the microbial mining hypothesis irrespective of C substrate (litter or SOC), but only in the forest site. Further, P addition effects on SOC support the stoichiometric hypothesis; P availability appeared key to soil C release (priming) in the forest site if labile C and N is available. These results clearly link previously contrasting hypotheses of the factors controlling SOC with the natural gradient in litter quality and nutrient availability that exists in ecosystems at different successional stages. A holistic theory that incorporates this variability of responses, due to different mechanisms, depending on nutrient availability and substrate quality is essential for devising management strategies to safeguard soil C stocks.  相似文献   

3.
The status of plant and microbial nutrient limitation have profound impacts on ecosystem carbon cycle in permafrost areas, which store large amounts of carbon and experience pronounced climatic warming. Despite the long-term standing paradigm assumes that cold ecosystems primarily have nitrogen deficiency, large-scale empirical tests of microbial nutrient limitation are lacking. Here we assessed the potential microbial nutrient limitation across the Tibetan alpine permafrost region, using the combination of enzymatic and elemental stoichiometry, genes abundance and fertilization method. In contrast with the traditional view, the four independent approaches congruently detected widespread microbial nitrogen and phosphorus co-limitation in both the surface soil and deep permafrost deposits, with stronger limitation in the topsoil. Further analysis revealed that soil resources stoichiometry and microbial community composition were the two best predictors of the magnitude of microbial nutrient limitation. High ratio of available soil carbon to nutrient and low fungal/bacterial ratio corresponded to strong microbial nutrient limitation. These findings suggest that warming-induced enhancement in soil nutrient availability could stimulate microbial activity, and probably amplify soil carbon losses from permafrost areas.  相似文献   

4.
Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.  相似文献   

5.
Soil organic matter (SOM) mineralization processes are central to the functioning of soils in relation to feedbacks with atmospheric CO2 concentration, to sustainable nutrient supply, to structural stability and in supporting biodiversity. Recognition that labile C‐inputs to soil (e.g. plant‐derived) can significantly affect mineralization of SOM (‘priming effects’) complicates prediction of environmental and land‐use change effects on SOM dynamics and soil C‐balance. The aim of this study is to construct response functions for SOM priming to labile C (glucose) addition rates, for four contrasting soils. Six rates of glucose (3 atm% 13C) addition (in the range 0–1 mg glucose g?1 soil day?1) were applied for 8 days. Soil CO2 efflux was partitioned into SOM‐ and glucose‐derived components by isotopic mass balance, allowing quantification of SOM priming over time for each soil type. Priming effects resulting from pool substitution effects in the microbial biomass (‘apparent priming’) were accounted for by determining treatment effects on microbial biomass size and isotopic composition. In general, SOM priming increased with glucose addition rate, approaching maximum rates specific for each soil (up to 200%). Where glucose additions saturated microbial utilization capacity (>0.5 mg glucose g?1 soil), priming was a soil‐specific function of glucose mineralization rate. At low to intermediate glucose addition rates, the magnitude (and direction) of priming effects was more variable. These results are consistent with the view that SOM priming is supported by the availability of labile C, that priming is not a ubiquitous function of all components of microbial communities and that soils differ in the extent to which labile C stimulates priming. That priming effects can be represented as response functions to labile C addition rates may be a means of their explicit representation in soil C‐models. However, these response functions are soil‐specific and may be affected by several interacting factors at lower addition rates.  相似文献   

6.
Permafrost thaw in the Arctic driven by climate change is mobilizing ancient terrigenous organic carbon (OC) into fluvial networks. Understanding the controls on metabolism of this OC is imperative for assessing its role with respect to climate feedbacks. In this study, we examined the effect of inorganic nutrient supply and dissolved organic matter (DOM) composition on aquatic extracellular enzyme activities (EEAs) in waters draining the Kolyma River Basin (Siberia), including permafrost‐derived OC. Reducing the phenolic content of the DOM pool resulted in dramatic increases in hydrolase EEAs (e.g., phosphatase activity increased >28‐fold) supporting the idea that high concentrations of polyphenolic compounds in DOM (e.g., plant structural tissues) inhibit enzyme synthesis or activity, limiting OC degradation. EEAs were significantly more responsive to inorganic nutrient additions only after phenolic inhibition was experimentally removed. In controlled mixtures of modern OC and thawed permafrost endmember OC sources, respiration rates per unit dissolved OC were 1.3–1.6 times higher in waters containing ancient carbon, suggesting that permafrost‐derived OC was more available for microbial mineralization. In addition, waters containing ancient permafrost‐derived OC supported elevated phosphatase and glucosidase activities. Based on these combined results, we propose that both composition and nutrient availability regulate DOM metabolism in Arctic aquatic ecosystems. Our empirical findings are incorporated into a mechanistic conceptual model highlighting two key enzymatic processes in the mineralization of riverine OM: (i) the role of phenol oxidase activity in reducing inhibitory phenolic compounds and (ii) the role of phosphatase in mobilizing organic P. Permafrost‐derived DOM degradation was less constrained by this initial ‘phenolic‐OM’ inhibition; thus, informing reports of high biological availability of ancient, permafrost‐derived DOM with clear ramifications for its metabolism in fluvial networks and feedbacks to climate.  相似文献   

7.
The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.  相似文献   

8.
Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in ‘young’ sites to phosphorus (P) limitation in ‘old’ sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status.  相似文献   

9.
Active processes of permafrost thaw in Western Siberia increase the number of soil subsidencies, thermokarst lakes and thaw ponds. In continuous permafrost zones, this process promotes soil carbon mobilisation to water reservoirs, as well as organic matter (OM) biodegradation, which produces a permanent flux of carbon dioxide (CO2) to the atmosphere. At the same time, the biogeochemical evolution of aquatic ecosystems situated in the transition zone between continuous permafrost and permafrost-free terrain remains poorly known. In order to better understand the biogeochemical processes that occur in thaw ponds and lakes located in discontinuous permafrost zones, we studied ~30 small (1–100,000 m2) shallow (<1 m depth) lakes and ponds formed as a result of permafrost subsidence and thaw of the palsa bog located in the transition zone between the tundra and forest-tundra (central part of Western Siberia). There is a significant increase in dissolved CO2 and methane (CH4) concentration with decreasing water body surface area, with the largest supersaturation with respect to atmospheric CO2 and CH4 in small (<100 m2) permafrost depressions filled with thaw water. Dissolved organic carbon (DOC), conductivity, and metal concentrations also progressively increase from large lakes to thaw ponds and depressions. As such, small water bodies with surface areas of 1–100 m2 that are not accounted for in the existing lake and pond databases may significantly contribute to CO2 and CH4 fluxes to the atmosphere, as well as to the stocks of dissolved trace elements and organic carbon. In situ lake water incubation experiments yielded negligible primary productivity but significant oxygen consumption linked to the mineralisation rate of dissolved OM by heterotrophic bacterioplankton, which produce a net CO2 flux to the atmosphere of 5 ± 2.5 mol C m2 year?1. The most significant result of this study, which has long-term consequences on our prediction of aquatic ecosystem development in the course of permafrost degradation is CO2, CH4, and DOC concentrations increase with decreasing lake age and size. As a consequence, upon future permafrost thaw, the increase in the number of small water bodies, accompanied by the drainage of large thermokarst lakes to the hydrological network, will likely favour (i) the increase of DOC and colloidal metal stocks in surface aquatic systems, and (ii) the enhancement of CO2 and CH4 fluxes from the water surface to the atmosphere. According to a conservative estimation that considers that the total area occupied by water bodies in Western Siberia will not change, this increase in stocks and fluxes could be as high as a factor of ten.  相似文献   

10.
The photochemical transformation of dissolved organic matter (DOM) in lakes and oceans has been shown to either reduce or enhance bacterial utilization. We compared the effects of UV radiation on the bacterial use of DOM in a wide range of lakes. Although complex DOM was converted in all irradiated samples into carboxylic acids that are readily utilized by bacteria, irradiation in several lakes resulted in a decreased ability of DOM to support bacterial growth. The effect of irradiation on the ability of DOM to promote bacterial growth was a positive function of the terrestrial humic matter, and a negative function of indigenous algal production. We suggest that the net effect of irradiation is a result of counteracting but concurrent processes rendering DOM either labile or recalcitrant. Humic DOM is predominantly transformed into forms of increased lability, whereas photochemical transformation into compounds of decreased bacterial substrate quality dominates in algal-derived DOM. Hence, solar-induced photochemical reactions interact with microbial degraders in different ways, depending on the origin and nature of the organic matter, affecting the transfer of energy within aquatic food webs, as well as the degradation and preservation of detrital organic matter, in different directions.  相似文献   

11.
A global warming‐induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide‐bearing bedrock. Limnological and paleolimnological approaches were used to assess and compare ARDs generated by rock glaciers, a typical landform of the mountain permafrost domain, and their effects on alpine headwater lakes with similar morphometric features and underlying bedrock geology, but characterized by different intensities of frost action in their catchments during the year. We argue that ARD and its effects on lakes are more severe in the alpine periglacial belt with mean annual air temperatures (MAAT) between ?2°C and +3°C, where groundwater persists in the liquid phase for most of the year, in contrast to ARD in the periglacial belt where frost action dominates (MAAT < ?2°C). The findings clearly suggest that the ambient air temperature is an important factor affecting the ARD production in alpine periglacial environments. Applying the paleoecological analysis of morphological abnormalities in chironomids through the past millennium, we tested and rejected the hypothesis that unfavorable conditions for aquatic life in the ARD‐stressed lakes are largely related to the temperature increase over recent decades, responsible for the enhanced release of ARD contaminants. Our results indicate that the ARDs generated in the catchments are of a long‐lasting nature and the frequency of chironomid morphological deformities was significantly higher during the Little Ice Age (LIA) than during pre‐ or post‐LIA periods, suggesting that lower water temperatures may increase the adverse impacts of ARD on aquatic invertebrates. This highlights that temperature‐mediated modulations of the metabolism and life cycle of aquatic organisms should be considered when reconstructing long‐term trends in the ecotoxicological state of lakes.  相似文献   

12.
13.
Synergy of Fresh and Accumulated Organic Matter to Bacterial Growth   总被引:1,自引:0,他引:1  
The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal.  相似文献   

14.
Lennon JT 《Oecologia》2004,138(4):584-591
Subsidies are donor-controlled inputs of nutrients and energy that can affect ecosystem-level processes in a recipient environment. Lake ecosystems receive large inputs of terrestrial carbon (C) in the form of dissolved organic matter (DOM). DOM inputs may energetically subsidize heterotrophic bacteria and determine whether lakes function as sources or sinks of atmospheric CO2. I experimentally tested this hypothesis using a series of mesocosm experiments in New England lakes. In the first experiment, I observed that CO2 flux increased by 160% 4 days following a 1,000 m C addition in the form of DOM. However, this response was relatively short lived, as there was no effect of DOM enrichment on CO2 flux beyond 8 days. In a second experiment, I demonstrated that peak CO2 flux from mesocosms in two lakes increased linearly over a broad DOM gradient (slope for both lakes=0.02±0.001 mm CO2·m–2 day–1 per m DOC, mean±SE). Concomitant changes in bacterial productivity and dissolved oxygen strengthen the inference that increasing CO2 flux resulted from the metabolism of DOM. I conducted two additional studies to test whether DOM-correlated attributes were responsible for the observed change in plankton metabolism along the subsidy gradient. First, terrestrial DOM reduced light transmittance, but experimental shading revealed that this was not responsible for the observed patterns of CO2 flux. Second, organically bound nitrogen (N) and phosphorus (P) accompanied DOM inputs, but experimental nutrient additions (without organic C) caused mesocosms to be satuated with CO2. Together, these results suggest that C content of terrestrial DOM may be an important subsidy for freshwater bacteria that can influence whether recipient aquatic ecosystems are sources or sinks of atmospheric CO2.  相似文献   

15.
Extracellular electron transfer (EET) by electroactive bacteria in anoxic soils and sediments is an intensively researched subject, but EET's function in planktonic ecology has been less considered. Following the discovery of an unexpectedly high prevalence of EET genes in a bog lake's bacterioplankton, we hypothesized that the redox capacities of dissolved organic matter (DOM) enrich for electroactive bacteria by mediating redox chemistry. We developed the bioinformatics pipeline FEET (Find EET) to identify and summarize predicted EET protein-encoding genes from metagenomics data. We then applied FEET to 36 bog and thermokarst lakes and correlated gene occurrence with environmental data to test our predictions. Our results provide indirect evidence that DOM may participate in bacterioplankton EET. We found a similarly high prevalence of genes encoding putative EET proteins in most of these lakes, where oxidative EET strongly correlated with DOM. Numerous novel clusters of multiheme cytochromes that may enable EET were identified. Taxa previously not considered EET-capable were found to carry EET genes. We propose that EET and DOM interactions are of ecologically important to bacterioplankton in small boreal lakes, and that EET, particularly by methylotrophs and anoxygenic phototrophs, should be further studied and incorporated into methane emission models of melting permafrost.  相似文献   

16.
The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosure experiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied over the growing season in 11 lakes situated along an altitudinal/climate gradient with low N‐deposition (<1 kg N ha?1 yr?1) in northern subarctic Sweden. Short‐term bioassay experiments with N‐ and P‐additions revealed that phytoplankton in high‐alpine lakes were more prone to P‐limitation, and with decreasing altitude became increasingly N‐ and NP‐colimited. Nutrient limitation was additionally most obvious in midsummer. There was also a strong positive correlation between phytoplankton growth and water temperature in the bioassays. Although excess nutrients were available in spring and autumn, on these occasions growth was likely constrained by low water temperatures. These results imply that enhanced N‐deposition over the Swedish mountain areas will, with the exception of high‐alpine lakes, enhance biomass and drive phytoplankton from N‐ to P‐limitation. However, if not accompanied by warming, N‐input from deposition will stimulate limited phytoplankton growth due to low water temperatures during large parts of the growing season. Direct effects of warming, allowing increased metabolic rates and an extension of the growing season, seem equally crucial to synergistically enhance phytoplankton development in these lakes.  相似文献   

17.
To demonstrate the sensitivity of aquatic ecosystems to forecasted increases in nitrogen deposition along the eastern ranges of the Canadian Rocky Mountains, we conducted midsummer limnological surveys of 29 remote alpine lakes and ponds via helicopter in 2007. Chemical analysis of water and in vitro nitrogen-enrichment bioassays of phytoplankton collected from each site were performed to estimate nutrient limitation. Use of a common chemical index for nutrient limitation (total dissolved inorganic nitrogen: total phosphorus; DIN:TP) together with supportive experimental evidence revealed nitrogen limitation in only 14% of the cases. Shallow (≤1 m maximum depth) ponds were more likely to be nitrogen-limited than lakes, especially as the former exhibited a significantly lower mean DIN:TP ratio of 7.4 during the late summer. Chemical and bioassay-based inferences of nitrogen limitation agreed in 74.5% of the cases, owing mainly to evidence of phosphorus limitation of the surveyed lake ecosystems (mean DIN:TP = 18) being supported by nonsignificant responses of their phytoplankton to nitrogen amendment. Our findings reveal that increased nitrogen deposition should not result in immediate widespread eutrophication of the Canadian Rockies; however, certain alpine ponds appeared nitrogen-limited, making them sensitive early indicators of the potential effects of anthropogenic nitrogen deposition in remote mountainous regions.  相似文献   

18.
Leachate from litter and vegetation penetrates permafrost surface soils during thaw before being exported to aquatic systems. We know this leachate is critical to ecosystem function downstream and hypothesized that thaw leachate inputs would also drive terrestrial microbial activity and nutrient uptake. However, we recognized two potential endpoint scenarios: vegetation leachate is an important source of C for microbes in thawing soil; or vegetation leachate is irrelevant next to the large background C, N, and P pools in thaw soil solution. We assessed these potential outcomes by making vegetation leachate from frozen vegetation and litter in four Arctic ecosystems that have a variety of litter quality and soil C, N, and P contents; one of these ecosystems included a disturbance recovery chronosequence that allowed us to test our second hypothesis that thaw leachate response would be enhanced in disturbed ecosystems. We added water or vegetation leachate to intact, frozen, winter soil cores and incubated the cores through thaw. We measured soil respiration throughout, and soil solution and microbial biomass C, N, and P pools and gross N mineralization immediately after a thaw incubation (?10 to 2°C) lasting 6 days. Vegetation leachate varied strongly by ecosystem in C, N, and P quantity and stoichiometry. Regardless, all vegetated ecosystems responded to leachate additions at thaw with an increase in the microbial biomass phosphate flush and an increase in soil solution carbon and nitrogen, implying a selective microbial uptake of phosphate from plant and litter leachate at thaw. This response to leachate additions was absent in recently disturbed, exposed mineral soil but otherwise did not differ between disturbed and undisturbed ecosystems. The selective uptake of P by microbes implies either thaw microbial P limitation or thaw microbial P uptake opportunism, and that spring thaw is an important time for P retention in several Arctic ecosystems.  相似文献   

19.
1. Ultraviolet radiation (UV) is an important stressor for zooplankton in alpine lake ecosystems. Multiple environmental variables such as dissolved organic matter (DOM), temperature and nutrient availability may alter how UV affects zooplankton. 2. We conducted a week‐long experiment manipulating UV, nutrients and DOM in enclosures suspended at the surface of cold and warm alpine lakes to determine the interactive effects of these variables on ovigerous Leptodiaptomus ashlandi (Marsh, 1893), a calanoid copepod. 3. UV had a negative effect on nauplii and gravid females at the colder temperature and at low, ambient DOM levels, but had no effect at the warmer temperature or when DOM was added. At the warmer temperature, fewer nauplii were produced in the +nutrient compared to ?nutrient treatment. Adult survival was not affected by UV or any other experimental variable. 4. These results demonstrate that the extent of the impact of UV radiation on zooplankton in alpine systems is altered by other environmental variables, and that these effects may not be apparent from experiments that look only at the survival of adult organisms that are better defended against UV.  相似文献   

20.
Dissolved organic matter (DOM) is an important vehicle for the movement of nutrients from terrestrial to aquatic systems. To investigate how the source and composition of aquatic DOM change in both space and time, we used chemical, spectroscopic, and isotopic analyses to characterize DOM in a headwater catchment in the Colorado Front Range. Streamwater samples for DOM analyses were collected from 2 sites, a lightly vegetated alpine site and a forested, subalpine site, in the North Boulder Creek catchment during the snowmelt runoff season (May–September). Concentrations of dissolved organic carbon (DOC) peaked on the ascending limb of the snowmelt hydrograph at both the alpine (2.6 mg C l−1) and the subalpine sites (7.0 mg C l−1) and decreased sharply on the descending limb of the hydrograph. Fractionation of DOM into operationally defined humic and non-humic components showed that the fulvic acid content of DOC decreased through the season at both sites and that spectroscopic (fluorescence and ultraviolet) properties of the humic DOM fraction shifted in a manner consistent with an increase in the proportion of humic DOM derived from instream sources as compared to terrestrial catchment sources. Humic and non-humic fractions of DOM isolated near peak flow in June and during low flows in September showed a seasonal enrichment in 15N and 13C as well as a seasonal decrease in the ratio of aromatic to aliphatic carbon, both of which were correlated with a decrease in the C:N ratio of the DOM fractions. These results suggest that seasonal shifts in the isotopic and chemical characteristics of DOM are a result of changes in catchment sources of DOM. In particular, it appears that DOM production in alpine lakes is an important contributor to the streamwater DOM load during late season low flows, especially in the alpine reach of the catchment. Our results further suggest that stable isotopes of C and N are useful tools, particularly when combined with ancillary data such as elemental analyses and catchment discharge, for evaluating sources and transformations of DOM at the catchment scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号