首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
At least two adaptive processes can lead to the evolution of sexual dimorphism: sexual selection (e.g. male-male combat) or natural selection (e.g. dietary divergence). We investigated the adaptive significance of a distinctive pattern of sexual dimorphism in a south-eastern Australian frog, Adelotus brevis. Male Adelotus grow larger than female conspecifics, have larger heads relative to body size, and have large paired projections (‘tusks’) in the lower jaw. All of these traits are rare among anurans. We quantified the degree of dimorphism in Adelotus, and gathered data on diets and mating systems of this species to evaluate the possible roles of sexual selection and dietary divergence in favoring die evolution of these sexually dimorphic traits. Analysis of prey items in alimentary tracts revealed significant sex differences in prey types. For example, females ate proportionally more arthropods and fewer molluscs than did males. However, this difference is likely to be a secondary consequence of habitat differences between the sexes (due in turn to their different reproductive roles) rather than a selective force for the evolution of sexual dimorphism. Calling males spend their time in moist habitats where pondsnails are abundant, whereas females are more often encountered in the drier arthropod-rich woodlands. A three-year behavioural ecology study on a field population revealed that reproductive males engage in agonistic interactions, with the sexually dimorphic tusks used to attack rivals. Larger body size contributed to male reproductive success. Small males were excluded from calling sites and, among the calling males, larger animals had higher reproductive success (numbers of matings) than did smaller individuals. Hence, the atypical pattern of sexual dimorphism in Adelotus brevis seems to have resulted from sexual selection for larger body size and tusk size in males, in the context of male-male agonistic behaviour, rather than natural selection for ecological divergence between the sexes.  相似文献   

2.
Sexual size dimorphism of adults proximately results from a combination of sexually dimorphic growth patterns and selection on growing individuals. Yet, most studies of the evolution of dimorphism have focused on correlates of only adult morphologies. Here we examined the ontogeny of sexual size dimorphism in an isolated population of the house finch (Carpodacus mexicanus). Sexes differed in growth rates and growth duration; in most traits, females grew faster than males, but males grew for a longer period. Sexual dimorphism in bill traits (bill length, width, depth) and in body traits (wing, tarsus, and tail length; mass) developed during different periods of ontogeny. Growth of bill traits was most different between sexes during the juvenile period (after leaving the nest), whereas growth of body traits was most sexually dimorphic during the first few days after hatching. Postgrowth selection on juveniles strongly influenced sexual dimorphism in all traits; in some traits, this selection canceled or reversed dimorphism patterns produced by growth differences between sexes. The net result was that adult sexual dimorphism, to a large degree, was an outcome of selection for survival during juvenile stages. We suggest that previously documented fast and extensive divergence of house finch populations in sexual size dimorphism may be partially produced by distinct environmental conditions during growth in these populations.  相似文献   

3.
Sexual dimorphism (SD) is the evolutionary outcome of selection acting differently on males and females. Several studies describe sexual differences in body size, although other morphological traits might be allometric between sexes and imply functional consequences. Here we test whether morphological differences between sexes in size and shape in the lizard Tropidurus catalanensis explain variation in performance of four locomotor traits. Our results show that males are larger than females and also exhibit longer limbs, longer muscles and larger muscle cross‐sectional areas, while females have longer trunks and more sharped anterior claws; males outperform females in all locomotor performances measured. Sexual differences in sprinting and climbing is related with body size, and climbing performance is also explained by limb lengths, by differences in lengths and cross‐sectional areas of specific muscles, and by interlimb distances. Between‐sex differences in exertion are also related to SD, despite associations with sharper posterior claws that are independent of sex. Grasping performance, however, is associated with some muscle and morphological parameters that are not sexually dimorphic. Together our results suggest that morphology might be under sexual selection in T. catalanensis, given that better locomotor performance likely favours male lizards in typical activities of this polygenic species, such as territory defence and female acquisition. Moreover, the longer trunks that characterize females may confer more space to accommodate eggs. On the other hand, territory defence by males probably increases their exposure to predators, resulting in a synergistic effect of sexual and natural selection in the evolution of SD in T. catalanensis.  相似文献   

4.
In many hummingbird species there is an opposite pattern of sexual dimorphism in bill length and other morphometric measures of body size. These differences seem to be closely related with differences in foraging ecology directly associated with a different resource exploitation strategy. The aim of this study was to assess if natural selection is acting on wing length and bill size in hummingbird males and females with different resource exploitation strategies (i.e., territorial males and non-territorial females). If competition for resources promotes sexual dimorphism as a selective pressure, males should be subjected to negative directional selection pressure for wing length and no selection pressure over bill size, while females should undergo positive directional selection pressure for both bill size and wing length. The morphometric data we collected suggests that there is no selection for wing length and bill size in male hummingbirds. In contrast, our females exhibited positive directional selection for both wing length and bill size. Although we cannot reject sexual selection acting on sexually dimorphic traits, this study suggests that natural selection may promote sexual dimorphism in traits that are closely related with hummingbird foraging ecology and resource exploitation strategies.  相似文献   

5.
The evolution of sexual dimorphism is an important topic of evolutionary biology, but few studies have investigated the determinants of sexual dimorphism over broad phylogenetic scales. The number of vertebrae is a discrete character influencing multiple traits of individuals, and is particularly suitable to analyze processes determining morphological variation. We evaluated the support of multiple hypotheses concerning evolutionary processes that may cause sexual dimorphism in the number of caudal vertebrae in Urodela (tailed amphibians). We obtained counts of caudal vertebrae from >2,000 individuals representing 27 species of salamanders and newts from Europe and the Near East, and integrated these data with a molecular phylogeny and multiple information on species natural history. Per each species, we estimated sexual dimorphism in caudal vertebrae number. We then used phylogenetic least squares to relate this sexual dimorphism to natural history features (courtship complexity, body size dimorphism, sexual ornamentation, aquatic phenology) representing alternative hypotheses on processes that may explain sexual dimorphism. In 18 % of species, males had significantly more caudal vertebrae than females, while in no species did females have significantly more caudal vertebrae. Dimorphism was highest in species where males have more complex courtship behaviours, while the support of other candidate mechanisms was weak. In many species, males use the tail during courtship displays, and sexual selection probably favours tails with more vertebrae. Dimorphism for the number of tail vertebrae was unrelated to other forms of dimorphism, such as sexual ornamentation or body size differences. Multiple sexually dimorphic features may evolve independently because of the interplay between sexual selection, fecundity and natural selection.  相似文献   

6.
The bill is a sexually dimorphic structure in many bird species and implicated in numerous functions. Sexual differences may arise from sexual selection or ecological divergence. Here, we examined differences in bill size and shape between males and females and explored to what extent these relate to feeding ecology of each sex in Cory's shearwater (Calonectris diomedea). We applied linear measurements and geometric morphometric methods to examine sexual differences in bill size and shape. We investigated feeding ecology by tracking foraging movements during the breeding period and by analysing stable isotope signatures in blood during the breeding period and in feathers grown during the non-breeding period. Bill traits were all sexually dimorphic, both in absolute and relative terms, and scaled hypermetrically with body mass in several characters in males. However, males and females did not differ in their feeding areas or isotopic signatures and no significant correlation was observed between these traits and bill dimorphism. Therefore, we discard the foraging-niche divergence hypothesis, and suggest that sexual dimorphism in bill size in this species is more likely driven by sexual selection related to antagonistic interactions.  相似文献   

7.
Sexual dimorphism in relation to current selection in the house finch   总被引:3,自引:0,他引:3  
Abstract.— Sexual dimorphism is thought to have evolved in response to selection pressures that differ between males and females. Our aim in this study was to determine the role of current net selection in shaping and maintaining contemporary sexual dimorphism in a recently established population of the house finch ( Carpodacus mexicanus ) in Montana. We found strong differences between sexes in direction of selection on sexually dimorphic traits, significant heritabilities of these traits, and a close congruence between current selection and observed sexual dimorphism in Montana house finches. Strong directional selection on sexually dimorphic traits and similar intensities of selection in each sex suggested that sexual dimorphism arises from adaptive responses in males and females, with both sexes being far from their local fitness optimum. This pattern is expected when a recently established population experiences continuous immigration from ecologically distinct areas of a species range or as a result of widely fluctuating selection pressures, as found in our study. Strong and sexually dimorphic selection pressures on heritable morphological traits, in combination with low phenotypic and genetic covariation among these traits during growth, may have accounted for close congruence between current selection and observed sexual dimorphism in the house finch. This conclusion is consistent with the profound adaptive population divergence in sexual dimorphism that accompanied very successful colonization of most of the North America by the house finch over the last 50 years.  相似文献   

8.
Sex-specific variation in morphology (sexual dimorphism) is a prevalent phenomenon among animals, and both dietary intake and resource allocation strategies influence sexually dimorphic traits (e.g., body size or composition). However, we investigated whether assimilation efficiency (AE), an intermediate step between dietary intake and allocation, can also vary between the sexes. Specifically, we tested whether sex-based differences in AE can explain variation in phenotypic traits. We measured morphometric characteristics (i.e., body length, mass, condition, and musculature) and AE of total energy, crude protein, and crude fat in post-reproductive adult Children’s pythons (which exhibit a limited female-biased sexual size dimorphism) fed both low and high dietary intakes. Meal size was negatively related to AE of energy. Notably, male snakes absorbed crude protein more efficiently and increased epaxial (dorsal) musculature faster than females, which demonstrates a link between AE and phenotype. However, females grew in body length faster but did not absorb any nutrient more efficiently than males. Although our results do not provide a direct link between AE and sexual size dimorphism, they demonstrate that sexual variation in nutrient absorption exists and can contribute to other types of sex-based differences in phenotype (i.e., sexual dimorphism in growth of musculature). Hence, testing the broader applicability of AE’s role in sexually dimorphic traits among other species is warranted.  相似文献   

9.
Sex-specific plasticity, the differential response that the genome of males and females may have to different environments, is a mechanism that can affect the degree of sexual dimorphism. Two adaptive hypotheses have been proposed to explain how sex-specific plasticity affects the evolution of sexual size dimorphism. The adaptive canalization hypothesis states that the larger sex exhibits lesser plasticity compared to the smaller sex due to strong directional selection for a large body size, which penalizes individuals attaining sub-optimal body sizes. The condition-dependence hypothesis states that the larger sex exhibits greater plasticity than the smaller sex due to strong directional selection for a large body size favoring a greater sensitivity as an opportunistic mechanism for growth enhancement under favorable conditions. While the relationship between sex-specific plasticity and sexual dimorphism has been studied mainly in invertebrates, its role in long-lived vertebrates has received little attention. In this study we tested the predictions derived from these two hypotheses by comparing the plastic responses of body size and shape of males and females of the snapping turtle (Chelydra serpentina) raised under common garden conditions. Body size was plastic, sexually dimorphic, and the plasticity was also sex-specific, with males exhibiting greater body size plasticity relative to females. Because snapping turtle males are larger than females, sexual size dimorphism in this species appears to be driven by an increased plasticity of the larger sex over the smaller sex as predicted by the condition-dependent hypothesis. However, male body size was enhanced under relatively limited resources, in contrast to expectations from this model. Body shape was also plastic and sexually dimorphic, however no sex by environment interaction was found in this case. Instead, plasticity of sexual shape dimorphism seems to evolve in parallel for males and females as both sexes responded similarly to different environments.  相似文献   

10.
Recent colonization of ecologically distinct areas in North America by the house finch (Carpodacus mexicanus) was accompanied by strong population divergence in sexual size dimorphism. Here we examined whether this divergence was produced by population differences in local selection pressures acting on each sex. In a long-term study of recently established populations in Alabama, Michigan, and Montana, we examined three selection episodes for each sex: selection for pairing success, overwinter survival, and within-season fecundity. Populations varied in intensity of these selection episodes, the contribution of each episode to the net selection, and in the targets of selection. Direction and intensity of selection strongly differed between sexes, and different selection episodes often favored opposite changes in morphological traits. In each population, current net selection for sexual dimorphism was highly concordant with observed sexual dimorphism--in each population, selection for dimorphism was the strongest on the most dimorphic traits. Strong directional selection on sexually dimorphic traits, and similar intensities of selection in both sexes, suggest that in each of the recently established populations, both males and females are far from their local fitness optimum, and that sexual dimorphism has arisen from adaptive responses in both sexes. Population differences in patterns of selection on dimorphism, combined with both low levels of ontogenetic integration in heritable sexually dimorphic traits and sexual dimorphism in growth patterns, may account for the close correspondence between dimorphism in selection and observed dimorphism in morphology across house finch populations.  相似文献   

11.
Both sexual selection and natural selection can influence the form of dimorphism in secondary sexual traits. Here, we used a comparative approach to examine the relative roles of sexual selection and natural selection in the evolution of sexually dimorphic coloration (dichromatism) and ornamentation in agamid lizards. Sexual dimorphism in head and body size were used as indirect indicators of sexual selection, and habitat type (openness) as an index of natural selection. We examined separately the dichromatism of body regions "exposed to" and "concealed from" visual predators, because these body regions are likely to be subject to different selection pressures. Dichromatism of "exposed" body regions was significantly associated with habitat type: males were typically more conspicuously coloured than females in closed habitats. By contrast, dichromatism of "concealed" body regions and ornament dimorphism were positively associated with sexual size dimorphism (SSD). When we examined male and female ornamentation separately, however, both were positively associated with habitat openness in addition to snout-vent length and head SSD. These results suggest that natural selection constrains the evolution of elaborate ornamentation in both sexes as well as sexual dichromatism of body regions exposed to visual predators. By contrast, dichromatism of "concealed" body regions and degree of ornament dimorphism appear to be driven to a greater degree by sexual selection.  相似文献   

12.
The evolution of sexual dimorphism will depend on how sexual, fecundity and viability selection act within each sex, with the different forms of selection potentially operating in opposing directions. We examined selection in the dioecious plant Silene latifolia using planted arrays of selection lines that differed in flower size (small vs. large). In this species, a flower size/number trade-off exists within each sex, and males produce smaller and more numerous flowers than females. Moreover, floral traits are genetically correlated with leaf physiology. Sexual selection favoring males in the small-flower line occurred via greater overlap in the timing of flower output between males from this line and females. Fecundity selection favored males with high flower production, as siring success was proportionate to pollen production. Viability selection opposed sexual selection, favoring males from the large-flower line. In females, fecundity and viability selection operated in the same direction, favoring those from the large-flower line via greater seed production and survival. These results concur with the pattern of floral sexual dimorphism. Together with previous results they suggest that the outcome of the different forms of selection will be environmentally dependent, and therefore help to explain variation among populations in sexually dimorphic traits.  相似文献   

13.
In sexual species, phenotypic divergence between males and females, or sexual dimorphism, is often the source of the most staggering examples of phenotypic variation in nature. Theory suggests that exaggerated sexual traits should drive sex-specific nutritional demands. Advances in spectrometry enable rapid quantification of the elements that make up individuals and traits, which can be used to assess patterns of intraspecific variation and the contribution of nutritionally-demanding sexual traits to these patterns. We measured dimorphism in the whole body stoichiometry of Hyalella amphipods and examined whether nutritional demands of exaggerated sexual traits differ from those of similar traits not under sexual selection. We found striking sexual dimorphism in multivariate whole body elemental composition (i.e., the ionome), including elements important for organismal growth and performance. In males, the exaggerated, sexually-selected claw-like appendage (posterior gnathopod) differed significantly in mass-specific stoichiometry from a similarly sized and serially homologous non-sexual trait (fifth pereopod), indicating that there are fundamental differences in the construction of sexual traits in relation to similar traits that are not under sexual selection. While sexually selected traits do differ from non-sexual traits in their ionomes, we found that possessing an exaggerated trait does not change organismal stoichiometry, indicating that trait exaggeration may not be directly driving ionomic sexual dimorphism. Finally, we found that larger traits are not comparatively larger resource sinks for any element, suggesting that the possession of larger traits is not a function of greater allocation of resources. Together, we discovered substantial sexual dimorphism at the lowest level of organization, chemical elements. Such information illuminates predictions about dimorphisms in foraging behavior, nutritional physiology, and sex-specific selection on the underlying loci. High throughput, multidimensional data on sexual divergence in stoichiometric composition is a powerful tool in understanding the evolutionary ecology of sexual dimorphisms.  相似文献   

14.
Investigating sexual dimorphism is important for our understanding of its influence on reproductive strategies including male-male competition, mate choice, and sexual conflict. Measuring physical traits in wild animals can be logistically challenging and disruptive for the animals. Therefore body size and ornament variation in wild primates have rarely been quantified. Gorillas are amongst the most sexually dimorphic and dichromatic primates. Adult males (silverbacks) possess a prominent sagittal crest, a pad of fibrous and fatty tissue on top of the head, have red crest coloration, their saddle appears silver, and they possess a silverline along their stomach. Here we measure levels of sexual dimorphism and within-male variation of body length, head size, and sexual dichromatism in a population of wild western gorillas using photogrammetry. Digital photogrammetry is a useful and precise method to measure sexual dimorphism in physical traits yielding sexual dimorphism indices (ISD), similar to those derived from traditional measurements of skeletal remains. Silverbacks were on an average 1.23 times longer in body length than adult females. Sexual dimorphism of head size was highest in measures of crest size (max ISD: 60.4) compared with measures of facial height (max ISD: 24.7). The most sexually dimorphic head size measures also showed the highest within-sex variation. We found no clear sex differences in crest coloration but there was large sexual dichromatism with high within-male variation in saddle coloration and silverline size. Further studies should examine if these sexually dimorphic traits are honest signals of competitive ability and confer an advantage in reproductive success.  相似文献   

15.
Sexually dimorphic traits are likely to have evolved through sexually antagonistic selection. However, recent empirical data suggest that intralocus sexual conflict often persists, even when traits have diverged between males and females. This implies that evolved dimorphism is often incomplete in resolving intralocus conflict, providing a mechanism for the maintenance of genetic variance in fitness-related traits. We used experimental evolution in Drosophila melanogaster to directly test for ongoing conflict over a suite of sexually dimorphic cuticular hydrocarbons (CHCs) that are likely targets of sex-specific selection. Using a set of experimental populations in which the transmission of genetic material had been restricted to males for 82 generations, we show that CHCs did not evolve, providing experimental evidence for the absence of current intralocus sexual conflict over these traits. The absence of ongoing conflict could indicate that CHCs have never been the target of sexually antagonistic selection, although this would require the existing dimorphism to have evolved via completely sexlinked mutations or as a result of former, but now absent, pleiotropic effects of the underlying loci on another trait under sexually antagonistic selection. An alternative interpretation, and which we believe to be more likely, is that the extensive CHC sexual dimorphism is the result of past intralocus sexual conflict that has been fully resolved, implying that these traits have evolved genetic independence between the sexes and that genetic variation in them is therefore maintained by alternative mechanisms. This latter interpretation is consistent with the known roles of CHCs in sexual communication in this species and with previous studies suggesting the genetic independence of CHCs between males and females. Nevertheless, direct estimates of sexually antagonistic selection will be important to fully resolve these alternatives.  相似文献   

16.
Abstract The degree of sexual dimorphism in a trait may be determined directly by disruptive selection, as well as by correlations with other traits under selection. We grew seeds from nine populations of the dioecious plant Silene latifolia in a common‐garden experiment to determine whether phenotypic variation and correlations existed for floral, leaf and resource allocation traits, and whether this variation had a genetic component. We also determined the traits which were sexually dimorphic, the degree of dimorphism, and whether it varied among populations. Seven traits exhibited among‐population variation and sexual dimorphism. Variation in the degree of dimorphism occurred only for two traits, suggesting that dimorphism may be evolving more slowly than trait means. Males had more, smaller flowers, shorter leaves, and allocated less of their total biomass to stems and more to leaves than females. Flower production was the most sexually dimorphic trait and was correlated with all measured traits. Most traits exhibited significant correlations between the sexes. The pattern of correlations and the degree of sexual dimorphism among traits lead us to suggest that intrasexual selection for an exaggerated floral display in males has indirectly led to sexual dimorphism in a host of other traits.  相似文献   

17.
Libellula luctuosa, a pond dragonfly found in eastern North America, is apparently sexually dimorphic. Previous studies of the mating behavior in this species suggested that both male-male competition and female mate choice are important influences. Males compete for territories, where they attract females and where mating occurs. Female behavior influences both the copulation success and the fertilization success of males. Because of temporal and spatial separation of these episodes of sexual selection, multivariate and nonparametric statistical techniques could be used to investigate the influence of components of sexual selection on various sexually dimorphic traits. Sexual dimorphism in L. luctuosa was first quantified; then the direct effects and the form of selection were estimated. Sexually dimorphic wing size, body size, wing coloration, and body coloration are distributed either continuously or discontinuously between the sexes in L. luctuosa. These traits have apparently diverged between the sexes as a result of directional sexual selection. Body size is further influenced by stabilizing selection. Intrasexual selection (success in gaining access to a territory) and intersexual selection (success in copulation and fertilization) can influence the same or different sexually dimorphic characters. Body size is influenced by directional selection during the intrasexual phase of sexual selection and is also influenced by stabilizing selection during intersexual selection. The size of the brown wing patch is influenced by directional selection, primarily during the intersexual phase of sexual selection. There is directional selection on the white wing patch during both phases. Thus, the different proximate mechanisms of sexual selection may jointly or separately affect the evolution of sexually dimorphic characters. Further empirical and theoretical investigations into the differences in the effects of intrasexual selection and intersexual selection are needed to clarify the circumstances leading to separate consequences of these two mechanisms of sexual selection.  相似文献   

18.
Sexual dimorphism often arises as a response to selection on traits that improve a male's ability to physically compete for access to mates. In primates, sexual dimorphism in body mass and canine size is more common in species with intense male–male competition. However, in addition to these traits, other musculoskeletal adaptations may improve male fighting performance. Postcranial traits that increase strength, agility, and maneuverability may also be under selection. To test the hypothesis that males, as compared to females, are more specialized for physical competition in their postcranial anatomy, we compared sex-specific skeletal shape using a set of functional indices predicted to improve fighting performance. Across species, we found significant sexual dimorphism in a subset of these indices, indicating the presence of skeletal shape sexual dimorphism in our sample of anthropoid primates. Mean skeletal shape sexual dimorphism was positively correlated with sexual dimorphism in body size, an indicator of the intensity of male–male competition, even when controlling for both body mass and phylogenetic relatedness. These results suggest that selection on male fighting ability has played a role in the evolution of postcranial sexual dimorphism in primates.  相似文献   

19.
Sexual dimorphism, particularly in ornamental traits, is likely to have arisen by sexual selection. Most empirical and theoretical studies of sexual dimorphism assume that ongoing sexual selection also maintains the dimorphism. Over four seasons, I measured the sexual selection acting on three sexually dimorphic attributes (epaulet size, body size, and the blackness of the body plumage) of male red-winged blackbirds and found no consistent directional or stabilizing selection on any of them. Correlational selection was also negligible. I used path analysis to explore potential relationships in more detail but found no direct or indirect effects of male traits on either within- or extrapair success. Males who were resident on the marsh for more years had higher within-pair success, primarily because they spent more of the season on their territory. Experimental manipulations of epaulet size and color and the extent of nonblack feathers in the black body plumage had no detectable effect on the number of within-pair mates, paternity, or the number of extrapair offspring sired in nearby territories. These results combine with data from other studies of red-winged blackbirds to suggest that, despite high variation in male mating success and hence a strong opportunity for sexual selection, several morphological attributes that differ between the sexes and vary among males are not under current sexual selection. The possible explanations for why add complexity to our understanding of how sexual selection operates.  相似文献   

20.
The potential viability costs of sexually selected traits are central to hypotheses about the evolution of exaggerated traits. Estimates of these costs in nature can come from selection analyses using multiple components of fitness during the same time frame. For a population of tree crickets (Oecanthus nigricornis: Gryllidae), we analyzed viability and sexual selection on male traits by comparing Oecanthus prey of a solitary wasp to those that survived, and comparing mating individuals to solitary males. We measured forewing width (sexually size dimorphic and used for singing), head width, pronotum length, and size of hind jumping legs as potential targets of selection. Supporting the hypothesis that sexually selected traits have viability costs, we found that significant directional sexual selection for wider heads was opposed by significant viability selection for narrower heads. Nonlinear selection revealed that individuals with wide heads and small legs were most attractive, but individuals with narrow heads, large legs, and intermediate pronotum length were most likely to survive. Successful mating may put males at greater risk of predation, especially if copulation per se is risky. Such balancing selection in tree crickets may have constrained the evolution of sexual dimorphism in head size—a condition seen in other gryllids and orthopterans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号