首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Jacobs  R. Hertel 《Planta》1978,142(1):1-10
An auxin binding sive, with characteristics different from the previously described auxin binding sites I and II in maize coleoptiles, is reported in homogenates of zucchini (Cucurbita pepo L. cv. Black Beauty) hypocotyls. Evidence from differential centrifugation and sucrose and metrizamide density gradients indicates that the site is localized on the plasma membrane. The site has a KD of 1–2×10–6 M for indole acetic acid and has a pH optimum of 5.0. Binding specificity measured with several auxins, weak auxins, and anti-auxins generally parallels the activities of the same compounds as inhibitors of auxin transport. 1-N-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid (2,3,5-TIBA), both auxin transport inhibitors in vivo, increase specific auxin binding to this site. 3,4,5-TIBA, which can partially reverse 2,3,5-TIBA's transport inhibition when the two substances are added together in vivo, partially reverses 2,3,5-TIBA's increase in specific auxin binding to the plasma membrane site when added with 2,3,5-TIBA in vitro. Preliminary investigations indicate that a similar plasma membrane site exists in maize (Zea mays L.) coleoptiles. It is suggested that different conformations of this site may function during active auxin transport.Abbreviations IAA indole-3-acetic acid - NPA 1-N-naphthylphthalamie acid - 2,3,5-TIBA 2,3,5-triiodobenzoic acid - 3,4,5-TIBA 3,4,5-triiodobenzoic acid - 1-NAA 1-naphthaleneacetic acid - 2-NAA 2-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - DTE dithioerythritol - MOPS N-morpholino-3-propansulfonic acid - CCO cytochrome c oxidase - CCR NADH: cytochrome c reductase - glu I glucan synthetase I - ER endoplasmic reticulum  相似文献   

2.
M. M. Moloney  P. E. Pilet 《Planta》1981,153(5):447-452
Auxin binding onto membrane fractions of primary roots of maize seedlings has been demonstrated using naphth-1yl-acetic acid (NAA) and indol-3yl-acetic acid (IAA) as ligands. This binding is compared with the already well characterized interaction between auxins and coleoptile membranes. The results indicate that while kinetic parameters are of the same order for root and coleoptile binding, a number of differences occur with respect to location in cells and relative affinity. The possible significance of the existence of such binding sites in root cells is discussed in relation to auxin action.Abbreviations 4-Cl-PA 4-chlorophenoxyacetic acid - EDTA ethylene diamine tetracetic acid - IAA indol-3yl-acetic acid - MCPA 2-methyl-4-chlorophenoxyacetic acid - NAA naphth-1yl-acetic acid - 2-NAA naphth-2yl-acetic acid - Tris 2-amino-2-(hydroxymethyl) propane-1,3 diol - TIBA 2,3,5 triiodobenzoic acid - NPA naphthylphthalamic acid - PCIB 4-chlorophenoxyisobutyric acid - PCPP 4-chlorophenoxyisopropionic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

3.
Discontinuous sucrose gradient fractionations indicate that the high-affinity auxin binding protein which can be solubilized from the microsomes of coleoptiles and primary leaves of Zea mays L. seedlings is probably located in the endoplasmic reticulum (ER). Since aromatic hydroxylations are enzymatic activities typical of the ER of plant cells, we have examined the effects of several electron-transport inhibitors on the binding of 1-naphthylacetic acid (NAA). NaN3 strongly inhibits this binding, but KCN and CO do not. Trans-cinnamic acid and trans-p-coumaric acid, which are the substrates of ER hydroxylase activities in plants (but which are themselves not auxins), also inhibit this binding. Supernatant fractions from corn shoots contain factors inhibitory to the binding of NAA to the intact membranes and solubilized Site I auxin-binding protein. Here we show that these factors are competitive inhibitors of the binding of [14C]NAA but do not change the apparent affinity of the protein for indoleacetic acid, 2,4-dichlorophenoxyacetic acid or naphthoxyacetic acid. Several tissues were assayed for factors inhibitory to auxin binding to the solubilized protein, but only supernants from corn shoots were markedly inhibitory at low concentrations.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - ER endoplasmic reticulum - IAA 3-indolylacetic acid - nKP n x 100 x g pellet - NAA 1-naphthylacetic acid C.I.W.-D.P.B. Publication No. 656  相似文献   

4.
Naphthylphthalamic acid (NPA), an inhibitor of polar auxin transport, binds with high affinity to membrane preparations from callus and cell suspension cultures derived from Nicotiana tabacum (K d approx. 2·10–9 M). The concentration of membrane-bound binding sites is higher in cell suspension than in callus cultures. The binding of NPA to these sites seems to be a simple process, in contrast to the binding of the synthetic auxin naphthylacetic acid (1-NAA) to membrane preparations from callus cultures, which is more complex (A.C. Maan et al., 1983, Planta 158, 10–15). Naphthylacetic acid, a number of structurally related compounds and the auxin-transport inhibitor triiodobenzoic acid were all able to compete with NPA for the same binding site with K d values ranging from 10–6 to 10–4 M. On the other hand, NPA was not able to displace detectable amounts of NAA from the NAA-binding site. A possible explantation is the existence of two different membrane-bound binding sites, one exclusively for auxins and one for NPA as well as auxins, that differ in concentration. The NPA-binding site is probably an auxin carrier.Abbreviations 1-NAA 1-Naphthylacetic acid - 2-NAA 2-Naphthylacetic acid - NPA N-1-Naphthylphthalamic acid  相似文献   

5.
Binding of 1-naphthylacetic acid (1-NAA) was assayed in microsomal membranes from Zea mays coleoptiles and from hypocotyls of Cucurbita pepo. Auxin binding site II was differentiated from site I binding by using phenylacetic acid (PAA) to saturate site I binding capacity. The amount of type-II binding sites, per gram original fresh weight, was 34 pmol with Zea and 6.4 pmol with Cucurbita. When maize membranes were separated by dextran gradient centrifugation, auxin binding site II migrated coincident with tonoplast marker enzymes. The physiologically active auxin 4-chloroindoleacetic acid (4-Cl-IAA) competed very poorly with 1-NAA binding to both site I and site II. This result suggests that sites I and II are not involved in the regulation of growth. When comparing isolated outer epidermis with intact coleoptile of Zea, similar amounts and ratios of site I and site II binding activities were observed.  相似文献   

6.
This paper shows that the level of 2,4-dichlorophenoxyacetic acid (2,4-D) in the medium determines the level of auxin-binding proteins in the membranes of carrot, Daucus carota, cells grown in suspension. This induction takes slightly more than 2 hours to complete and can be elicited by natural as well as synthetic auxins. The auxin binding sites thus generated, which are pronase-sensitive, bind 2,4-D, indoleacetic acid, and naphthalene-acetic acid (NAA) equally well. However both α- and β-NAA bind, whereas only α-NAA is effective in the inductive process. Cells committed to embryogeny (proembryogenic masses) do not respond to auxin, i.e. their level of auxin-binding proteins remains very low, and they do not seem to synthesize the hormone, as indicated by inhibitor studies. Sensitivity to, and production of, auxin, begins when the embryo becomes polarized, i.e. at postglobular stage.  相似文献   

7.
Accumulation of radiolabelled naphthalene-1-acetic acid (1-NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-acetic acid (IAA) has been measured in suspension-cultured tobacco (Nicotiana tabacum) cells. In this paper is presented a simple methodology allowing activities of the auxin influx and efflux carriers to be monitored independently by measuring the cellular accumulation of [3H]NAA and [14C]2,4-D. We have shown that 1-NAA enters cells by passive diffusion and has its accumulation level controlled by the efflux carrier. By contrast, 2,4-D uptake is mostly ensured by the influx carrier and this auxin is not secreted by the efflux carrier. Both auxin carriers contribute to IAA accumulation. The kinetic parameters and specificity of each carrier have been determined and new information concerning interactions with naphthylphthalamic acid, pyrenoylbenzoic acid, and naphthalene-2-acetic acid are provided. The relative contributions of diffusion and carrier-mediated influx and efflux to the membrane transport of 2,4-D, 1-NAA, and IAA have been quantified, and the data indicate that plant cells are able to modulate over a large range their auxin content by modifying the activity of each carrier.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 1-NAA naphthalene-1-acetic acid - 2-NAA naphthalene-2-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - Vm maximum transport capacity of the carrier In honour of Professor Dieter Klämbt's 65th birthdayThe authors thank Drs. A.E. Geissler and G.F. Katekar (CSIRO, Canberra City, Australia) for providing auxin efflux carrier inhibitors CPD, CPP, and PBA, and Dr. H. Barbier-Brygoo (Institut des Sciences Végétales, CNRS, Gif-sur-Yvette, France) for helpful discussions. This work was supported by funds from the Centre National de la Recherche Scientifique (UPR0040).  相似文献   

8.
The synthesis of 2,4-dichlorophenylselenoacetic acid (2,4-D-Se) may be completed in three steps starting from 2,4-dichloroaniline. The selenium is inserted in the molecule by reaction of a diazonium salt with potassium selenocyanate. 2,4-D-Se has been tested as an auxin in several bioassays including the regeneration of somatic embryos, adventitious root formation and the associated temporary increase of endogenous auxins at the induction phase, and callus formation, and compared with the natural auxin indoleacetic acid (IAA), the classical synthetic auxin(s) naphthaleneacetic acid (NAA) and/or 2,4-dichlorophenoxyacetic acid (2,4-D), and with the synthetic seleniated IAA, 3-(benzo[b]selenienyl) acetic acid, BSAA. These biological assays classified 2,4-D-Se together with BSAA among the most powerful synthetic auxins. The role of selenium is briefly discussed.  相似文献   

9.
Two types of auxin-binding sites (sites I and II) in membranes from maize (Zea mays L.) coleoptiles were characterized. Site I was a protein with a relative molecular mass of 21 000, and the distribution of site I protein on sucrose density gradient fractionation coincided with that of NADH-cytochrome-c reductase (EC 1.6.99.3), a marker enzyme of the endoplasmic reticulum. Immunoprecipitation and immunoblotting studies showed that the content of site I protein in maize coleoptiles was approx. 2 g·(g FW)-1. Site II occurred in higher-density fractions and also differed immunologically from site I. Site I was present at the early developmental stage of the coleoptile and increased only twice during coleoptile growth between day 2 and 4. Site II activity was low at the early stage and increased more substantially between day 3 and 4, a period of rapid growth of the coleoptile. Both sites decreased concurrently after day 4, followed by a reduction in the growth rate of the coleoptile. Coleoptiles with the outer epidermis removed showed a lower site I activity than intact coleoptiles, indicating that site I was concentrated in the outer epidermis. Site II, in contrast, remained constant after removal of the outer epidermis. The results indicate that site I is not a precursor of site II and that the two sites are involved in different cellular functions.Abbreviations FW fresh weight - M r relative molecular mass - 1-NAA 1-naphthaleneacetic acid - 2-NAA 2-naphthaleneacetic acid - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

10.
A method for monitoring the time course of auxin-induced volume changesby protoplasts at a high temporal resolution was developed for Zeamays coleoptile protoplasts. Auxins, like indole-3-acetic acid(IAA), induce a rapid change in volume. Immediately after addition ofthis auxin, a transient shrinkage was observed, followed by a long-termswelling response. This reaction occurred in the same time window as thetypical auxin growth response of intact coleoptiles. Active auxins, like1-naphthalene acetic acid (1-NAA) and 4-chloroindole-3-acetic acid(4-Cl-IAA), caused similar volume changes, whereas the inactive analogue2-naphthalene acetic acid (2-NAA) had no effect. The phytotoxinfusicoccin (FC) induced a rapid swelling response. We conclude that thissingle cell system is very adequate to analyse mechanisms of auxinsignal transduction.  相似文献   

11.
P. Aducci  A. Ballio  M. Marra 《Planta》1986,167(1):129-132
Binding of fusicoccin (FC) to microsomal preparations of corn (Zea mays L.) coleoptiles is enhanced after incubation of the tissue with indole-3-acetic acid (IAA). Treatment of the kinetic data according to Scatchard shows that the enhancement is a consequence of an increase in the number of high-affinity FC-binding sites without changes of their KD. The minimal effective concentration of IAA is 10-7 M; above 10-5 M the effect declines. The stimulation is insensitive to protein-synthesis inhibitors (cycloheximide and puromycin). The same effect is observed with the synthetic auxins 2,4-dichlorophenoxyacetic acid and naphtalene-1-acetic acid while it is abolished by the auxin antagonists naphtalene-2-acetic acid and p-chlorophenoxyisobutyric acid. Since the above effect is only observed with intact tissue and not after incubation of IAA with microsomal preparations, a direct interaction of IAA with the FC-binding sites is ruled out and an alternative mechanism must be sought.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FC fusicoccin - [3H]FC 3H-labeled dihydrofusicoccin - IAA indole-3-acetic acid - 1-NAA naphtalene-1-acetic acid - 2-NAA naphtalene-2-acetic acid - PCIB p-chlorophenoxyisobutyric acid  相似文献   

12.
Anions modify the response of guard-cell anion channels to auxin   总被引:4,自引:0,他引:4  
G. Lohse  R. Hedrich 《Planta》1995,197(3):546-552
The anion channel in the guard-cell plasma membrane of Vicia faba, GCAC1, possesses recognition sites for the plant growth hormone auxin at the extracellular mouth of the channel (Marten et al. 1991, Nature 353:759-762). Using the patch-clamp technique we could demonstrate that auxins induced a shift of the voltage dependence of the anion channel to hyperpolarized potentials; the shift was attenuated during an increase in the extracellular chloride concentration, indicating that chloride shields the hormone-binding site. The auxin-induced shift was concentration-dependent, characterized by a Michaelis-Menten type of behaviour with a half saturation constant (K m) of about 10 M naphthalene-1-acetic acid (1-NAA) in the presence of 2 mM Cl and 12 M in 80 mM Cl. In the presence of malate, another gating modulator of GCAC1, auxins were less effective, indicating that both ligands compete for common sites. Inactive auxins with respect to stomatal opening or stimulation of the plasma membrane H+-ATPase, such as 2-NAA, modulated the activation threshold and kinetics of GCAC1 similar to the active form 1-NAA. At a concentration of 100 M 2-NAA the peak-current potential shifted by about 30 mV more negative.Abbreviations GCAC1 guard cell anion channel 1 - 1-NAA naphthalene-1-acetic acid - 2-NAA naphthalene-2-acetic acid - TEA tetraethylammonium  相似文献   

13.
Glutathione S-transferases (GSTs; EC 2.5.1.18) are encoded by a gene family. Some GSTs have the capacity to bind to indole-3-acetic acid (IAA), whereas the gene expression of other GSTs is regulated by auxin. In order to assess a possible physiological significance of the auxin binding of GST, we investigated effects of auxins on the activity of GST expressed in Escherichia coli. cDNA cloning was carried out for the fifth gene ( GST5 ) of GST in Arabidopsis. Although the deduced amino acid sequence of GST5 was remotely related to that of the other Arabidopsis GSTs (less than 20% identical), the GST5 protein (GST5) expressed in E. coli showed GST activity. Apparent Km values of GST5 are 0.86 and 1.29 m M for glutathione (GSH) and 1-chloro-2,4-dinitrobenzene, respectively. IAA, 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (1-NAA) and 2-NAA inhibited the enzyme activity competitively with respect to GSH. The apparent Ki of IAA is 1.56 m M . Salicylic acid inhibited GST activity in a noncompetitive manner. 2,4-D was the most inhibitory among the tested chemicals. GST5 bound to GSH-immobilized agarose gel was effectively eluted by IAA. These results indicate that IAA and the related substances bind to GST5 at the GSH-binding site, and exclude the possibility that the compounds could be substrates for GST5. Although the Ki value of IAA is too high for any physiological consequences, it might be assumed that GST activity is modulated in vivo by an auxin-related substance(s). The steady-state level of the GST5 mRNA was increased by wounding, heat shock, and spraying buffer on the plant, but was not influenced by auxin treatment.  相似文献   

14.
The roles of fungal auxins in the regulation of elongation growth, photo-, and gravitropism are completely unknown. We analyzed the effects of exogenous IAA (indole-3-acetic acid), various synthetic auxins including 1-NAA (1-naphthaleneacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid), and the auxin transport inhibitor NPA (N-1-naphtylphtalamic acid) on the growth rate and bending of the unicellular sporangiophore of the zygomycete fungus, Phycomyces blakesleeanus. Sporangiophores that were submerged in an aqueous buffer responded to IAA with a sustained enhancement of the growth rate, while 1-NAA, 2,4-D, and NPA elicited an inhibition. In contrast, sporangiophores kept in air responded to IAA with a 20 to 40% decrease of the growth rate, while 1-NAA and NPA elicited an enhancement. The unilateral and local application of IAA in the growing zone of the sporangiophore elicited in 30 min a moderate negative tropic bending in wild type C2 and mutant C148madC, which was, however, partially masked by a concomitant avoidance response caused by the aqueous buffer. Auxin transport-related genes ubiquitous in plants were found in a BLAST search of the Phycomyces genome. They included members of the AUX1 (auxin influx carrier protein 1), PILS (PIN-LIKES, auxin transport facilitator protein), and ABCB (plant ATP-binding cassette transporter B) families while members of the PIN family were absent. Our observations imply that IAA represents an intrinsic element of the sensory transduction of Phycomyces and that its mode of action must very likely differ in several respects from that operating in plants.  相似文献   

15.
The expression of the auxin-inducible Nt103-1 gene of tobacco was studied in Arabidopsis thaliana. For this purpose we introduced a gene fusion between the promoter of the gene and the -glucuronidase reporter gene (GUS) into Arabidopsis thaliana. The expression and location of GUS activity were studied histochemically in time and after incubation of seedlings on medium containing auxins or other compounds. The auxins 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid (IAA), and 1-naphthylacetic acid (1-NAA) were able to induce GUS activity in the root tips of transgenic seedlings. The auxin transport inhibitor 2,3,5-triiodobenzoic acid was able to induce GUS activity not only in the root tip, but also in other parts of the root. Induction by the inactive auxin analog 3,5-dichlorophenoxyacetic acid was much weaker. Compounds like glutathione and the heavy metal CuSO4 were weak inducers. GUS activity observed after induction by glutathione was located in the transition zone. Salicylic acid and compounds increasing the concentration of hydrogen peroxide in the cell were also very well able to induce GUS activity in the roots. The possible involvement of hydrogen peroxide as a second messenger in the pathway leading to the induction of the Nt103-1 promoter is discussed.  相似文献   

16.
17.
Microsomal vesicles were prepared from zucchini (Cucurbita pepo L.) hypocotyls containing radioactive phosphatidylethanolamine or phosphatidylcholine, and these lipids were used as substrates by phospholipase A which is activated by auxins. Phospholipase D and phospholipase C hydrolysed the same substrates but were not influenced by auxin. Phospholipase A was activated by the auxins indolyl-3-acetic acid, 2,4-dichlorophenoxyacetic acid and, to a lesser extent, by -naphthaleneacetic acid whereas the weak auxins 2,3-dichlorophenoxyacetic acid and -naphthaleneacetic acid were almost inactive. This hormone specificity was also found in growth tests with etiolated zucchini hypocotyls. Phospholipase A activation by auxin was blocked by a polyclonal antibody against the maize auxin-binding protein. We propose that phospholipase A activation is a primary reaction in the signal transduction leading from hormone-binding to the growth response.Abbreviations IAA indolyl-3-acetic acid - 2,3-D, 2,4-D 2,3- and 2,4-dichlorophenoxyacetic acid - -NAA; -NAA - and -naphthaleneacetic acid This work was supported by the Deutsche Forchungsgemeinschaft. We thank D. Klämbt (Botanical Institute, University of Bonn, FRG) for a generous gift of polyclonal antibody (IgG fraction) against auxin-binding protein and U. Kutschera (Botanical Institute, University of Bonn, FRG) for advice with the growth tests.  相似文献   

18.
Plant Ku genes were identified very recently in Arabidopsis thaliana, and their roles in repair of double-stranded break DNA and maintenance of telomere integrity were scrutinized. In this study, the cDNAs encoding Ku70 (VrKu70) and Ku80 (VrKu80) were isolated from mung bean (Vigna radiata L.) hypocotyls. Both genes were expressed widely among different tissues of mung bean with the highest levels in hypocotyls and leaves. The VrKu gene expression was stimulated by exogenous auxins in a concentration- and time-dependent manner. The stimulation could be abolished by auxin transport inhibitors, N-(1-naphthyl) phthalamic acid and 2,3,5-triiodobenzoic acid implicating that exogenous auxins triggered the effects following their uptake by the cells. Further analysis using specific inhibitors of auxin signaling showed that the stimulation of VrKu expression by 2,4-dichlorophenoxyacetic acid (2,4-D) was suppressed by intracellular Ca(2+) chelators, calmodulin antagonists, and calcium/calmodulin dependent protein kinase inhibitors, suggesting the involvement of calmodulin in the signaling pathway. On the other hand, exogenous indole-3-acetic acid (IAA) and alpha-naphthalene acetic acid (NAA) stimulated VrKu expression through the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Altogether, it is thus proposed that 2,4-D and IAA (or NAA) regulate the expression of VrKu through two distinct pathways.  相似文献   

19.
Maisch J  Nick P 《Plant physiology》2007,143(4):1695-1704
Polar transport of auxin has been identified as a central element of pattern formation. The polarity of auxin transport is linked to the cycling of pin-formed proteins, a process that is related to actomyosin-dependent vesicle traffic. To get insight into the role of actin for auxin transport, we used patterned cell division to monitor the polarity of auxin fluxes. We show that cell division in the tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line is partially synchronized and that this synchrony can be perturbed by inhibition of auxin transport by 1-N-naphthylphthalamic acid. To address the role of actin in this synchrony, we induced a bundled configuration of actin by overexpressing mouse talin. The bundling of actin impairs the synchrony of cell division and increases the sensitivity to 1-N-naphthylphthalamic acid. Addition of the polarly transported auxins indole-3-acetic acid and 1-naphthyl acetic acid (but not 2,4-dichlorophenoxyacetic acid) restored both the normal organization of actin and the synchrony of cell division. This study suggests that auxin controls its own transport by changing the state of actin filaments.  相似文献   

20.
George J. P. Murphy 《Planta》1980,149(5):417-426
Naphthalene-1-acetic acid (NAA) binding by membrane fractions derived from maize has been re-evaluated. Using a computer curve-fitting procedure only one major type of NAA binding, in terms of binding affinity, could be identified. Auxins, antiauxins and structurally related compounds have been tested for their competitive effect on NAA binding and the inhibitor constants for a number of these have been determined. Extracts from various plant species have been examined for their NAA binding ability, but all showed much less binding than maize leaf or coleoptile preparations. The possibility of the NAA binding by maize extracts being due to a true hormone receptor is discussed.Abbreviations BA benzoic acid - CPIB p-chlorophenoxyisobutyric acid - 2,4-D 2,4-dichlorophenoxyacetic acid - DCB 2,4-dichlorobenzoic acid - IAA indolyl-3-acetic acid - NAA napthalene-1-acetic acid - 2-NAA napthalene-2-acetic acid - NAOA napthalene-2-oxyacetic acid - PA phenylacetic acid - PU phenylurea - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号