首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Guo W  Lee RJ 《Bioscience reports》2000,20(5):419-432
Synthetic gene transfer vectors based on polyplexes complexed to anionic liposomes (LPDII vectors) were characterized for their transfection efficiency in cultured mammalian cells. The effects of polycation to DNA ratio, lipid to DNA ratio, choice of polycation and lipid composition were systematically evaluated in human oral carcinoma KB cells, using a luciferase reporter gene. For LPDII formulations containing poly-L-lysine and dioeoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) anionic liposomes, at a constant lipid to DNA ratio, an increase in the polycation/DNA (N/P) ratio resulted in an increase in transfection activity. Meanwhile, the optimal lipid to DNA ratio for efficient gene delivery was influenced by the N/P ratio used, and was increased at higher N/P ratios. For the DNA condensing agent, poly-L-lysine could be replaced by polyethylenimine (PEI) as the DNA condensing agent in the formulations. For the lipidic components, CHEMS could be replaced by other anioniclipids including oleic acid, dicetylphosphate and phosphatidylserine, but DOPE, a fusogenic helper lipid, could not be replaced by dioleolyphosphatidylcholine. LPDII formulation showed significantly less cytotoxicity compared to the commonly used cationic lipsomes or PEI mediated transfection and several cell lines were transfected with high efficiency. LPDII vectors avoid the use of toxic cationic lipids and may have potential application in gene therapy.  相似文献   

2.
In vivo gene delivery mediated by cationic lipids is often compromised by aggregation due to complexation with proteins in the blood. To improve the stability of cationic lipid-DNA complexes, the present study aimed to develop a novel approach in which a poly(cationic lipid) (PCL) is utilized to form stable cationic polyplexes for gene transfection. Hydrogenation of the acrylamide analogue of betaAE-DMRI, the polymerizable precursor of PCL, provided a monomeric lipid derivative (MHL) which was used for direct comparison of corresponding lipoplex stability, toxicity, and transfection activity. Various formulations of cationic liposomes, such as MHL, MHL-cholesterol (Chol), PCL, PCL-Chol, DOTAP-Chol, and commercially available lipofectamine were generated and examined in this study. The new poly(cationic lipid) did not display any significant toxicity to rat hepatocytes or Hep G2 cells as indicated by an LDH leakage assay. Furthermore, PCL was significantly less toxic than MHL, DOTAP-Chol or lipofectamine. Suspensions of PCL were resistant to aggregation even after 24 h of exposure to solutions containing 50 and 100% fetal bovine serum (FBS). In contrast, suspensions of lipofectamine extensively aggregated after 24 h of exposure to 50% FBS. To examine the influence of lipid polymerization on gene transfer activity, liposome-mediated transfections of a luciferase vector (pGL3) were performed in Hep G2 and Alexander cell lines. The luciferase activity of the PCL formulations in Hep G2 cells were similar to those of the MHL, DOTAP-Chol and lipofectamine formulations, demonstrating that lipid polymerization does not compromise transfection activity. In comparison to the monomeric precursor MHL and to the industry transfection standards DOTAP and lipofectamine, the novel poly(cationic lipid) exhibited the lowest cytotoxicity, was the most resistant to serum-induced aggregation and had comparable transfection activity when coformulated with cholesterol. This novel polymerization approach for the development of stable and active polyplexes may prove a valuable alternative for in vivo gene delivery.  相似文献   

3.
Ko YT  Bickel U  Huang J 《Oligonucleotides》2011,21(2):109-114
To advance knowledge on polyplex structure and composition, fluorescence resonance energy transfer (FRET) and anisotropy measurements were applied to polyplexes of rhodamine-labeled polyethylenimine (PEI) and fluorescein-labeled double-stranded oligodeoxynucleotide (ODN). About 25?kDa PEI was compared with low-molecular-weight PEI of 2.7?kDa. FRET reached maxima at amine to phosphate (N/P) ratios of 2 and 3 for 2.7?kDa and 25?kDa PEI, respectively, with similar average distances between donor and acceptor dye molecules in polyplexes. Anisotropy measurements allowed estimating the bound fractions of PEI and ODN. At N/P?=?6, all ODN was bound, but only 58% of PEI 25?kDa and 45% of PEI 2.7?kDa. In conclusion, the higher molecular weight of PEI may conformationally restrict the availability of amino groups for charge interaction with phosphate groups in ODN. Moreover, significant fractions of both types of PEI remain free in solution at N/P ratios frequently used for transfection. FRET and anisotropy measurements provide effective tools for probing polyplex compositions and designing optimized delivery systems.  相似文献   

4.
BACKGROUND: Polycation (PC, polyplex), cationic lipid (CL, lipoplex), and a combination of PC/CL (lipopolyplex) formulations were investigated for gene transfer to slow-proliferating human colon carcinoma cell lines (COGA). METHODS: The luciferase reporter gene was complexed with either PC, CL, or PC/CL. PCs included linear (PEI22lin, 22 kDa) and branched polyethylenimine (PEI2k, 2 kDa; PEI25br, 25 kDa) and poly-L-lysine (PLL18 with 18 lysine monomers). CLs included DOCSPER, DOSPER and DOTAP. Lipopolyplexes were formed by either sequentially first mixing DNA with PC or CL, followed by addition of CL or PC, respectively, or simultaneously with both PC and CL. Particle size and zeta-potential were determined and gene transfer and cytotoxicity were quantified on COGA-3, -5, -12, HeLa and Sw480 cells. RESULTS: The highest gene transfer was achieved when DNA was first complexed with PC followed by CL. At low ionic strength, particles were small (50-130 nm) with a zeta-potential of +20-40 mV. At physiological ionic strength, only lipoplexes of DOCSPER or DOSPER and their respective lipopolyplexes with PEI25br were stable to aggregation (140-220 nm). Lipopolyplexes of PEI25br were between 5- to 400-fold more efficient compared to the corresponding lipoplexes or polyplexes in all cases. Chloroquine did not significantly affect lipopolyplex-mediated gene transfer. CONCLUSIONS: Lipopolyplex formulations of PEI25br in combination with multivalent CLs (DOCSPER, DOSPER) are promising tools for in vitro and potentially also in vivo gene transfer to colorectal cancer cells.  相似文献   

5.
Cationic liposomes and the complexes they form with DNA (lipoplexes) constitute the most promising alternative to the use of viral vectors for gene therapy. One of the limitations to their application in vivo, however, is the inhibition of gene delivery by serum. In a previous study, we demonstrated that transferrin (Tf)-lipoplexes were superior to plain lipoplexes in transfecting HeLa cells in the presence of high concentrations of serum. With the goal of obtaining efficient gene expression in vivo, we evaluated the efficacy of Tf-lipoplexes (containing DOTAP and cholesterol) in transfecting primary hepatocytes and adipocytes in the presence of high serum concentrations. The association of transferrin with cationic liposomes increased luciferase expression compared to plain lipoplexes in primary cells as well as in HepG2 and 3T3-L1 differentiated adipocytes. The complexes were not cytotoxic and were highly effective in protecting DNA from attack by DNase I. An efficient and reliable method was developed to prepare lipoplexes containing both Tf and protamine sulfate, where the latter was mixed with transferrin, followed by the addition of cationic liposomes and DNA. The resulting protamine-Tf-lipoplexes increased significantly the levels of gene expression in cultured cells and in various tissues in mice following i.v. administration.  相似文献   

6.
Cationic liposomes and the complexes they form with DNA (lipoplexes) constitute the most promising alternative to the use of viral vectors for gene therapy. One of the limitations to their application in vivo, however, is the inhibition of gene delivery by serum. In a previous study, we demonstrated that transferrin (Tf)-lipoplexes were superior to plain lipoplexes in transfecting HeLa cells in the presence of high concentrations of serum. With the goal of obtaining efficient gene expression in vivo, we evaluated the efficacy of Tf-lipoplexes (containing DOTAP and cholesterol) in transfecting primary hepatocytes and adipocytes in the presence of high serum concentrations. The association of transferrin with cationic liposomes increased luciferase expression compared to plain lipoplexes in primary cells as well as in HepG2 and 3T3-L1 differentiated adipocytes. The complexes were not cytotoxic and were highly effective in protecting DNA from attack by DNase I. An efficient and reliable method was developed to prepare lipoplexes containing both Tf and protamine sulfate, where the latter was mixed with transferrin, followed by the addition of cationic liposomes and DNA. The resulting protamine-Tf-lipoplexes increased significantly the levels of gene expression in cultured cells and in various tissues in mice following i.v. administration.  相似文献   

7.
Polyethylenimines (PEIs) and cationic liposomes are widely used for nonviral gene delivery. When PEIs have been used alone, the transfection efficiency has been higher for larger or linear than smaller or branched PEIs. We have reported previously that a combination of small PEIs and liposomes results in a potentiation of transfection efficiency in vitro. Here, the role of PEI size and structure in this synergism has been clarified further. Therefore, two structurally different high MW PEIs, i.e. the linear PEI22K and branched PEI25K, were studied in the SMC cells. We found that both linear PEI22K and branched PEI25K resulted in a similar synergism and comparable transfection efficiencies. However, the potentiation for larger PEIs found in the present study was weaker than that for smaller PEIs obtained in our previous studies. In conclusion, our present and previous results demonstrate that the increment of PEI/liposome-mediated gene transfection by different types of PEIs in vitro is a common attribute that is rather associated with their size than the structure. Interestingly, the effect of PEI size seems to be opposite when combined with liposome or given alone, i.e. the small PEIs are more effective when combined and less effective when alone than the larger ones.  相似文献   

8.
Among the cationic polymers, polyethyleneimine (PEI) is a promising candidate for delivery of oligodeoxynucleotides (ODNs). In this study, we wondered whether pegylation of PEI influences the complexation with ODNs. We especially aimed to investigate whether ODNs are differently protected against enzymatic degradation in PEI and polyethylene glycol-polyethyleneimine (PEG-PEI) polyplexes. Using fluorescence resonance energy transfer combined with fluorescence correlation spectroscopy, we found that PEI/ODN polyplexes remain to protect the ODNs they carry over a prolonged period of time while in PEG-PEI/ODN polyplexes the degradation of the ODNs slowly proceeds. We attribute this to the fact that PEI seems to compact the ODNs more firmly in the polyplexes' core than PEG-PEI, which apparently also results in a better protection against enzymatic degradation. These observations may also influence the efficiency of PEI-based ODN delivery in vivo, where pegylation is an attractive strategy to enhance the stability of the polyplexes in the blood stream.  相似文献   

9.
Green fluorescent protein (GFP) antisense oligodeoxynucleotide (ODN) was covalently conjugated to hyaluronic acid (HA) via a reducible disulfide linkage, and the HA-ODN conjugate was complexed with protamine to increase the extent of cellular uptake and enhance the gene inhibition efficiency of GFP expression. The HA-ODN conjugate formed more stable polyelectrolyte complexes with protamine as compared to naked ODN, probably because of its increased charge density. The higher cellular uptake of protamine/HA-ODN complexes than that of protamine/naked ODN complexes was attributed to the formation of more compact nanosized complexes (approximately 200 nm in diameter) in aqueous solution. Protamine/HA-ODN complexes also showed a comparable level of GFP gene inhibition to that of cytotoxic polyethylenimine (PEI)/ODN complexes. Since both HA and protamine are naturally occurring biocompatible materials, the current formulation based on a cleavable conjugation strategy of ODN to HA could be potentially applied as safe and effective nonviral carriers for ODN and siRNA nucleic acid therapeutics.  相似文献   

10.
Immunostimulatory CpG oligonucleotides (ODN) show promise as immune adjuvants, anti-allergens, and immunoprotective agents. Increasing the bioavailability and duration of action of CpG ODN should improve their therapeutic utility. Encapsulating ODN in sterically stabilized cationic liposomes provides protection from serum nucleases while facilitating uptake by B cells, dendritic cells, and macrophages. In a pathogen challenge model, sterically stabilized cationic liposomes encapsulation doubled the duration of CpG ODN-induced immune protection. In an immunization model, coencapsulation of CpG ODN with protein Ag (OVA) magnified the resultant Ag-specific IFN-gamma and IgG responses by 15- to 40-fold compared with Ag plus CpG ODN alone. These findings support the use of sterically stabilized cationic liposomes to significantly enhance the therapeutic efficacy of CpG ODN.  相似文献   

11.
A great challenge for gene therapy is to develop a high efficient gene delivery system with low toxicity. Nonviral vectors are still attractive although the current agents displayed some disadvantages (i.e., low transfection efficiency, high toxicity). To overcome the high toxicity of poly(ethylene imine) (PEI) and low transfection efficiency of PEGylated PEI (PEG-PEI), we linked a cell specific target molecule folate (FA) on poly(ethylene glycol) (PEG) and then grafted the FA-PEG onto hyperbranched PEI 25 kDa. The FA-PEG- grafted-hyperbranched-PEI (FA-PEG-PEI) effectively condensed plasmid DNA (pDNA) into nanoparticles with positive surface charge under a suitable N/P ratio. Tested in deferent cell lines (i.e., HEK 293T, glioma C6 and hepatoma HepG2 cells), no significant cytotoxicity of FA-PEG-PEI was added to PEG-PEI. More importantly, significant transfection efficiency was exhibited in FA-targeted cells. Reporter assay showed that FA-PEG-PEI/pDNA complexes had significantly higher transgene activity than that of PEI/pDNA in folate-receptor (FR) positive (HEK 293T and C6) cells but not FR-negative (HepG2) cells. These results indicated that FA-PEG-PEI might be a promising candidate for gene delivery with the characteristics of good biocompatibility, potential biodegradability, and relatively high gene transfection efficiency.  相似文献   

12.
The continually increasing wealth of knowledge about the role of genes involved in acquired or hereditary diseases renders the delivery of regulatory genes or nucleic acids into affected cells a potentially promising strategy. Apart from viral vectors, non-viral gene delivery systems have recently received increasing interest, due to safety concerns associated with insertional mutagenesis of retro-viral vectors. Especially cationic polymers may be particularly attractive for the delivery of nucleic acids, since they allow a vast synthetic modification of their structure enabling the investigation of structure-function relationships. Successful clinical application of synthetic polycations for gene delivery will depend primarily on three factors, namely (1) an enhancement of the transfection efficiency, (2) a reduction in toxicity and (3) an ability of the vectors to overcome numerous biological barriers after systemic or local administration. Among the polycations presently used for gene delivery, poly(ethylene imine), PEI, takes a prominent position, due to its potential for endosomal escape. PEI as well as derivatives of PEI currently under investigation for DNA and RNA delivery will be discussed.This review focuses on structure-function relationships and the physicochemical aspects of polyplexes which influence basic characteristics, such as complex formation, stability or in vitro cytotoxicity, to provide a basis for their application under in vivo conditions. Rational design of optimized polycations is an objective for further research and may provide the basis for a successful cationic polymer-based gene delivery system in the future.  相似文献   

13.
14.
Complexes (lipoplexes) between cationic liposomes and single-strand oligodeoxynucleotides (ODN) are potential delivery systems for antisense therapy. The nanometer-scale morphology of these assemblies is relevant to their transfection efficiency. In this work the monocationic lipid dioleoyloxytrimethylammoniumpropane, the neutral "helper" lipid cholesterol, and an 18-mer anti-bcl2 ODN were combined at different ratios. The lipoplexes formed were characterized for the quantity of ODN bound, for the degree of lipid mixing, and for their size. The nanostructure of the system was examined by cryogenic-temperature transmission electron microscopy, augmented by small-angle x-ray scattering. Addition of ODN to cationic liposomes induced both liposome aggregation and the formation of a novel condensed lamellar phase. This phase is proposed to be stabilized by anionic single-strand ODN molecules intercalated between cationic bilayers. The proportion of cholesterol present apparently did not affect the nature of lipoplex microstructure, but changed the interlamellar spacing.  相似文献   

15.
Although bioactive polymers such as cationic polymers have demonstrated potential as drug carriers and nonviral gene delivery vectors, high toxicity and uncontrolled, instantaneous cellular interactions of those vectors have hindered the successful implementation In Vivo. Fine control over the cellular interactions of a potential drug/gene delivery vector would be thus desirable. Herein, we have designed nanohybrid systems (100-150 nm in diameter) that combine the polycations with protective outer layers consisting of biodegradable polymeric nanoparticles (NPs) or liposomes. A commonly used polycation polyethylenimine (PEI) was employed after conjugation with rhodamine (RITC). The PEI-RITC conjugates were then encapsulated into (i) polymeric NPs made of either poly(lactide-co-glycolide) (PLGA) or poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-PLGA); or (ii) PEGylated liposomes, resulting in three nanohybrid systems. Through the nanohybridization, both cellular uptake and cytotoxicity of the nanohybrids were kinetically controlled. The cytotoxicity assay using MCF-7 cells revealed that liposome-based nanohybrids exhibited the least toxicity, followed by PEG-PLGA- and PLGA-based NPs after 24 h incubation. The different kinetics of cellular uptake was also observed, the liposome-based systems being the fastest and PLGA-based systems being the slowest. The results present a potential delivery platform with enhanced control over its biological interaction kinetics and passive targeting capability through size control.  相似文献   

16.
Receptor-associated protein (RAP) is a ligand for all members of low-density lipoprotein (LDL) receptor families. RAP is internalized into cells via receptor-mediated endocytic trafficking, making it an attractive mechanism for efficient gene delivery. In this study, we have developed a gene delivery system using RAP as a targeting ligand. A RAP cDNA lacking a C-terminal heparin-binding domain was amplified by polymerase chain reaction (PCR) from a human liver cDNA library and was reamplified by using a primer containing a cysteine codon at its carboxyl end to facilitate its conjugation to polylysine (polyK). RAP was purified using a bacterial expression system and coupled to poly-D-lysine (PDL) or poly-L-lysine (PLL) of average MW 50 kDa via the heterobifunctional cross-linker SPDP. Using fluorescence-labeled RAP ligand, cellular uptake of the transfection complexes into HepG2 cells was shown to be highly efficient and more specific to PDL-conjugated RAP compared with PLL-conjugated one. Plasmid DNA containing a luciferase reporter gene was condensed with either RAP-PDL or RAP-PLL. In vitro transfection into HepG2 cells with RAP-PDL conjugate resulted in significantly higher luciferase expression levels in comparison to either nonconjugated PDL, or RAP-PLL, or LipofecAMINE/DNA complexes in the presence of 10% fetal bovine serum. Luciferase expression was inhibited by the addition of excess RAP. Treatment of the cells with Lovastatin, which inhibits HMG-Co reductase and increases expression of LDL receptor, stimulates luciferase expression, suggesting that the gene delivery is specifically mediated by LDL receptor. Thus, RAP-PDL conjugates have the potential to be used as a new nonviral gene delivery vector.  相似文献   

17.
《Research in virology》1991,142(1):17-24
The inportance of electrostatic interactions in the early phases of vesicular stomatitis virus (VSV) infection has been investigated in susceptible cells of different origin, human (HeLa) and avian (CER), by using some polyanions (heparin, polygalacturonic acid and mucin) and polycations (polymyxin B sulphate, poly-L-lysine, protamine, histone and polybrene). In HeLa cells, the attachment of VSV was enhanced by polymers having a positive charge and inhibited by those having a negative charge. In CER cells, all the polyanions tested reduced virus infection. Among the polycations, histone, polymyxin B sulphate and poly-L-lysine enhanced virus plaque forle protamine and polybrene reduced virus attachment. The effect of polyions on VSV particles and on cell membrane receptors has also been investigated. The analysis of the results obtained suggest that, although electrostatic interactions play an essential role in the binding of VSV to the cell membrane, more specific structural features appear to be required for viral attachment to occur.  相似文献   

18.
BACKGROUND: Efficient in vivo vectors are needed to exploit the enormous potential of RNA interference (RNAi). Such methods require optimisation for specific delivery routes, tissues and usages. We tested the capacity of different non-viral vectors and formulation methods for inhibition of exogenous (luciferase) gene expression when used to introduce small interfering RNA (siRNA) into the mouse brain in vivo. METHODS: Polyethylenimine (PEI)-based polyplexes and JetSI (a mixture of cationic lipids)-based lipoplexes were used to vectorise plasmid DNA encoding the firefly Photinus pyralis luciferase gene and picomolar amounts of siRNA directed against this gene. Two controls were used, DNA encoding an unrelated luciferase from Renilla reniformis and a mutated siRNA sequence. RESULTS: First, we found that linear PEI, although efficient for delivering nucleic acids to cells, did not permit development of siRNA activity within the dose range tested (<0.5 pmol). Second, various combinations of cationic lipids were tried and the best formulation was found to be a combination of JetSI with the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE). Efficient inhibition of target, firefly luciferase was obtained with exceedingly low amounts of siRNA: 78 +/- 6% inhibition at 24 h post-transfection with 0.2 pmol siRNA. This inhibition was dose-dependent and specific. No effect was seen on the control gene, co-transfected Renilla luciferase, and the control mutated siRNA sequence had no effect on the targeted firefly luciferase. CONCLUSIONS: We have optimised an efficient cationic lipoplex method for delivery of siRNA into the newborn mouse brain. Specific inhibition of exogenous target gene expression is obtained with picomolar amounts of siRNA.  相似文献   

19.
An efficient and safe delivery carrier is required for the therapeutic application of siRNA. In this research, amphiphilic peptides with arginine and valine residues were evaluated as siRNA carriers. The peptides were composed of 1-4 arginine-blocks and 6 valine-blocks. In the aqueous solution, the arginine-valine peptides (RV peptides) formed micelles with hydrophobic cores comprised of a valine block and a cationic surface comprised of an arginine block. In a gel retardation assay, the RV peptides completely retarded siRNA at a 1:10 weight ratio (siRNA:peptide). A heparin competition assay suggested that the RV peptides formed more stable complexes with siRNA than they did with polyethylenimine (25 kDa, PEI25k). In an in vitro silencing assay, a dual luciferase expression (Renilla and firefly luciferases) vector, psiCHECK2, was co-transfected into human embryonic kidney 293 cells with Renilla-siRNA using the RV peptides. The specific silencing effect of Renilla luciferase was analyzed in reference to firefly luciferase. The results showed that the R3V6 peptide was more efficient than the R1V6, R2V6, and R4V6 peptides in silencing Renilla luciferase. In the flow cytometry and in vitro silencing studies, the R3V6 peptide delivered Renila-siRNA as efficiently as PEI25k. The siVEGF/R3V6 peptide also reduced endogenous vascular endothelial growth factor (VEGF) expression in CT27 cells as efficiently as PEI25k. A cytotoxicity assay showed that RV peptides did not cause any cytotoxicity. Therefore, RV peptides may be useful for the development of a safe and efficient delivery carrier of siRNA.  相似文献   

20.
We examined the effect of oligodeoxynucleotide (ODN) structure on the interactions between cationic polymers and ODNs. Unstructured and hairpin structured ODNs were used to form complexes with the model cationic polymer, poly-L-lysine (pLL), and the characteristics of these polymer-ODN interactions were subsequently examined. We found that hairpin structured ODNs formed complexes with pLL at slightly lower pLL:ODN charge ratios as compared to unstructured ODNs and that, at high charge ratios, greater fractions of the hairpin ODNs were complexed, as measured by dye exclusion. The dissociation of pLL-ODN interactions was tested further by challenge with heparin, which induced complex disruption. Both the kinetics and heparin dose response of ODN release were determined. The absolute amount and the kinetic rate of ODN release from the complexes of pLL and unstructured ODN were greater, as compared to hairpin ODNs. Our results therefore highlight the role of ODN structure on the association-dissociation behavior of polymer-ODN complexes. These findings have implications for the selection of ODN sequences and design of polymeric carriers used for cellular delivery of ODNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号