首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties.  相似文献   

2.
Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties.  相似文献   

3.
Kim HY  Fomenko DE  Yoon YE  Gladyshev VN 《Biochemistry》2006,45(46):13697-13704
Methionine sulfoxide reductases are key enzymes that repair oxidatively damaged proteins. Two distinct stereospecific enzyme families are responsible for this function: MsrA (methionine-S-sulfoxide reductase) and MsrB (methionine-R-sulfoxide reductase). In the present study, we identified multiple selenoprotein MsrA sequences in organisms from bacteria to animals. We characterized the selenocysteine (Sec)-containing Chlamydomonas MsrA and found that this protein exhibited 10-50-fold higher activity than either its cysteine (Cys) mutant form or the natural mouse Cys-containing MsrA, making this selenoenzyme the most efficient MsrA known. We also generated a selenoprotein form of mouse MsrA and found that the presence of Sec increased the activity of this enzyme when a resolving Cys was mutated in the protein. These data suggest that the presence of Sec improves the reduction of methionine sulfoxide by MsrAs. However, the oxidized selenoprotein could not always be efficiently reduced to regenerate the active enzyme. Overall, this study demonstrates that sporadically evolved Sec-containing forms of methionine sulfoxide reductases reflect catalytic advantages provided by Sec in these and likely other thiol-dependent oxidoreductases.  相似文献   

4.
Methionine sulfoxide reductases (Msrs) are enzymes that catalyze the reduction of methionine sulfoxide back to methionine. In vivo, Msrs are essential in the protection of cells against oxidative damage to proteins and in the virulence of some bacteria. Two structurally unrelated classes of Msrs, named MsrA and MsrB, exist. MsrB are stereospecific to R epimer on the sulfur of sulfoxide. All MsrB share a common reductase step with the formation of a sulfenic acid intermediate. For the subclass of MsrB whose recycling process passes through the formation of an intradisulfide bond, the recycling reducer is thioredoxin. In the present study, X-ray structures of Neisseria meningitidis MsrB have been determined. The structures have a fold based on two β-sheets, similar to the fold already described for other MsrB, with the recycling Cys63 located in a position favorable for disulfide bond formation with the catalytic Cys117. X-ray structures of Xanthomonas campestris MsrB have also been determined. In the C117S MsrB structure with a bound substrate, the recycling Cys31 is far from Ser117, with Trp65 being essential in the reductase step located in between. This positioning prevents the formation of the Cys31-Cys117 disulfide bond. In the oxidized structure, a drastic conformational reorganization of the two β-sheets due to withdrawal of the Trp65 region from the active site, which remains compatible with an efficient thioredoxin-recycling process, is observed. The results highlight the remarkable structural malleability of the MsrB fold.  相似文献   

5.
Methionine sulfoxide reductases protect cells by repairing oxidatively damaged methionine residues in proteins. Here, we report the first three-dimensional structure of the mammalian selenoprotein methionine sulfoxide reductase B1 (MsrB1), determined by high resolution NMR spectroscopy. Heteronuclear multidimensional spectra yielded NMR spectral assignments for the reduced form of MsrB1 in which catalytic selenocysteine (Sec) was replaced with cysteine (Cys). MsrB1 consists of a central structured core of two β-sheets and a highly flexible, disordered N-terminal region. Analysis of pH dependence of NMR signals of catalytically relevant residues, comparison with the data for bacterial MsrBs, and NMR-based structural analysis of methionine sulfoxide (substrate) and methionine sulfone (inhibitor) binding to MsrB1 at the atomic level reveal a mechanism involving catalytic Sec95 and resolving Cys4 residues in catalysis. The MsrB1 structure differs from the structures of Cys-containing MsrBs in the use of distal selenenylsulfide, residues needed for catalysis, and the mode in which the active form of the enzyme is regenerated. In addition, this is the first structure of a eukaryotic zinc-containing MsrB, which highlights the structural role of this metal ion bound to four conserved Cys. We integrated this information into a structural model of evolution of MsrB superfamily.  相似文献   

6.
Methionine sulfoxide reductases (Msrs) are oxidoreductases that catalyze thiol-dependent reduction of oxidized methionines. MsrA and MsrB are the best known Msrs that repair methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO) residues in proteins, respectively. In addition, an Escherichia coli enzyme specific for free Met-R-SO, designated fRMsr, was recently discovered. In this work, we carried out comparative genomic and experimental analyses to examine occurrence, evolution, and function of fRMsr. This protein is present in single copies and two mutually exclusive subtypes in about half of prokaryotes and unicellular eukaryotes but is missing in higher plants and animals. A Saccharomyces cerevisiae fRMsr homolog was found to reduce free Met-R-SO but not free Met-S-SO or dabsyl-Met-R-SO. fRMsr was responsible for growth of yeast cells on Met-R-SO, and the double fRMsr/MsrA mutant could not grow on a mixture of methionine sulfoxides. However, in the presence of methionine, even the triple fRMsr/MsrA/MsrB mutant was viable. In addition, fRMsr deletion strain showed an increased sensitivity to oxidative stress and a decreased life span, whereas overexpression of fRMsr conferred higher resistance to oxidants. Molecular modeling and cysteine residue targeting by thioredoxin pointed to Cys101 as catalytic and Cys125 as resolving residues in yeast fRMsr. These residues as well as a third Cys, resolving Cys91, clustered in the structure, and each was required for the catalytic activity of the enzyme. The data show that fRMsr is the main enzyme responsible for the reduction of free Met-R-SO in S. cerevisiae.Among the 20 common amino acids in proteins, Met and Cys are the residues most susceptible to oxidation by reactive oxygen species (ROS).3 Upon oxidation, Met forms a diastereomeric mixture of methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO). Met-S-SO and Met-R-SO can be reduced back to Met by MsrA (Met-S-SO reductase) and MsrB (Met-R-SO reductase), respectively (1). These enzymes have been reported to play important roles in the protection of cells and proteins against oxidative stress (28). Reversible Met oxidation has also been proposed to scavenge ROS, thereby protecting cells from oxidative damage (911). Increased expression of MsrA and MsrB can extend the life span of yeast cells and fruit flies, whereas deletion of the MsrA gene leads to the reduction in life span in mice and yeast (1214).Previously, three MsrB isozymes and a single MsrA were found in mammals. MsrB1 (also known as SelR or SelX) is a selenoprotein, which contains selenocysteine (Sec) in the active site and is localized to cytosol and nucleus. MsrB2 and MsrB3 are Cys-containing homologs of MsrB1. MsrB2 resides in mitochondria, whereas human MsrB3 has two alternative splice forms, wherein MsrB3A localizes to the endoplasmic reticulum and MsrB3B is targeted to mitochondria (15).The catalytic mechanism of MsrA involves a sulfenic acid intermediate at the catalytic Cys followed by the formation of a disulfide bond between the catalytic and resolving Cys. A third Cys may then form a disulfide with the resolving Cys (16, 17). The resulting disulfide is reduced by thioredoxin or other oxidoreductases, generating the initial, reduced form of the protein. X-ray structures of MsrAs from several organisms have been solved (17, 18).Cys-containing MsrBs (e.g. mammalian MsrB2 and MsrB3) follow the same mechanism, although the two Msr types have no homology and are characterized by different structural folds (1921). Sec-containing mammalian MsrB1 has also been characterized and compared with Cys-containing MsrBs (20). Interestingly, Cys-containing MsrBs share some active site features (e.g. conserved residues His77, Val81, and Asn97, numbering based on mouse MsrB1 sequence), which are absent in selenoprotein MsrB1s. When these three residues were introduced into the Sec-containing MsrB1, the enzyme was inactive. However, when the three residues were introduced into the Cys mutant form of MsrB1, the activity was partially recovered (20). This evidence supports the idea that catalytic Cys and Sec require different active site features.In addition to MsrA and MsrB functions, previous studies suggested the presence of additional Msr activities in Escherichia coli and yeast cells, which were especially evident in cells deficient in both enzymes (14, 2123). Recently, Lowther and colleagues (24) discovered a new enzyme, designated fRMsr (free Met-R-SO reductase), which catalyzes the reduction of free Met-R-SO in E. coli. They showed that this activity is associated with a GAF-like-domain-containing protein. Homologs of this enzyme were found in other bacteria as well as in eukaryotes, suggesting that these proteins also could function as fRMsrs. However, none of these other proteins have been functionally characterized.In this work, we cloned a yeast homolog of bacterial fRMsr and functionally characterized it with regard to the in vivo function and catalytic mechanism. In addition, we carried out comparative genomic analyses to examine evolution of this protein family. The data show that fRMsr is the main enzyme responsible for the reduction of free Met-R-SO in both prokaryotes and unicellular eukaryotes.  相似文献   

7.
Previous reports described thioredoxin (Trx) as a very poor reductant for mammalian MsrB2 and MsrB3, which lack a resolving Cys residue. In contrast, we here report that Trx could reduce both MsrB2 and MsrB3 enzymes, similarly to the reduction of mammalian MsrA. We demonstrated that functional Trx is required for the reduction of these enzymes. We further identified MsrB2- or MsrB3-Trx complexes formed through intermolecular disulfide bonds involving catalytic residue of Trx. The present study provides evidence that the sulfenic acid intermediate of oxidized MsrBs lacking resolving Cys could interact with Trx and be directly reduced by this protein.  相似文献   

8.
Mammalian thioredoxin reductases (TrxRs) contain selenium as selenocysteine (Sec) in the C-terminal redox center -Gly-Cys-Sec-Gly-OH to reduce Trx and other substrates; a Sec-to-Cys substitution in mammalian TrxR yields an almost inactive enzyme. The corresponding tetrapeptide sequence in Drosophila melanogaster TrxR (Dm-TrxR), -Ser-Cys-Cys-Ser-OH, endows the orthologous enzyme with a catalytic competence similar to mammalian selenoenzymes, but implementation of the Ser-containing tetrapeptide sequence SCCS into the mammalian enzyme does not restore the activity of the Sec-to-Cys mutant form (turnover number <2/min). MOPAC calculation suggested that the C-terminal hexapeptide Pro-Ala-Ser-Cys-Cys-Ser-OH functions as a redox center that alleviates the necessity for selenium in Dm-TrxR, and a mutant form of human lung TrxR that mimics this hexapeptide sequence showed improved catalytic turnover (17.4/min for DTNB and 13.2/min for E. coli trx) compared to the Sec-to-Cys mutant. MOPAC calculation also suggested that the dominant form of the Pro-containing hexapeptide is a C+ conformation, which perhaps has a catalytic advantage in facile reduction of the intramolecular disulfide bond between Cys497 and Cys498 by the N-terminal redox center in the neighboring subunit.  相似文献   

9.
Three classes of methionine sulfoxide reductases are known: MsrA and MsrB which are implicated stereo-selectively in the repair of protein oxidized on their methionine residues; and fRMsr, discovered more recently, which binds and reduces selectively free L-Met-R-O. It is now well established that the chemical mechanism of the reductase step passes through formation of a sulfenic acid intermediate. The oxidized catalytic cysteine can then be recycled by either Trx when a recycling cysteine is operative or a reductant like glutathione in the absence of recycling cysteine which is the case for 30% of the MsrBs. Recently, it was shown that a subclass of MsrAs with two recycling cysteines displays an oxidase activity. This reverse activity needs the accumulation of the sulfenic acid intermediate. The present review focuses on recent insights into the catalytic mechanism of action of the Msrs based on kinetic studies, theoretical chemistry investigations and new structural data. Major attention is placed on how the sulfenic acid intermediate can be formed and the oxidized catalytic cysteine returns back to its reduced form.  相似文献   

10.
Kim HY  Zhang Y  Lee BC  Kim JR  Gladyshev VN 《Proteins》2009,74(4):1008-1017
Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by (75)Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues.  相似文献   

11.
Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.  相似文献   

12.
Methionine sulfoxide reductases A and B (MsrA and MsrB) have been known to be thioredoxin (Trx)-dependent enzymes that catalyze the reduction of methionine sulfoxide in a stereospecific manner. This work reports that glutaredoxin, another major thiol-disulfide oxidoreductase, can serve as a reductant for both MsrA and MsrB. Glutaredoxins efficiently reduced 1-Cys MsrA lacking a resolving Cys, which is not reducible by Trx. Glutaredoxins also reduced 3-Cys MsrA containing two resolving Cys. The glutaredoxin-dependent activity of the 3-Cys MsrA was comparable with the Trx-dependent activity. The kinetic data suggest that 1-Cys MsrA is more efficiently reduced by glutaredoxin than 3-Cys form. Also, glutaredoxins could function as a reductant for 1-Cys MsrB lacking a resolving Cys as previously reported. In contrast to the previous report, 2-Cys MsrB containing a resolving Cys was reducible by the glutaredoxins. Collectively, this study demonstrates that glutaredoxins reduce MsrAs and MsrBs with or without resolving Cys.  相似文献   

13.
Several engineered selenocysteine (Sec)-containing glutaredoxins (Grxs) and their enzymatic properties have been reported, but natural selenoprotein Grxs have not been previously characterized. We expressed a bacterial selenoprotein Grx from Clostridium sp. (also known as Alkaliphilus oremlandii) OhILAs in Escherichia coli and characterized this selenoenzyme and its natural Cys homologues in Clostridium and E. coli. The selenoprotein Grx had a 200-fold higher activity than its Sec-to-Cys mutant form, suggesting that Sec is essential for catalysis by this thiol-disulfide oxidoreductase. Kinetic analysis also showed that the selenoprotein Grx had a 10-fold lower K(m) than Cys homologues. Interestingly, this selenoenzyme efficiently reduced a Clostridium selenoprotein methionine sulfoxide reductase A (MsrA), suggesting that it is the natural reductant for the protein that is not reducible by thioredoxin, a common reductant for Cys-containing MsrAs. We also found that the selenoprotein Grx could not efficiently reduce a Cys version of Clostridium MsrA, whereas natural Clostridium and E. coli Cys-containing Grxs, which efficiently reduce Cys-containing MsrAs, poorly acted on the selenoprotein MsrA. This specificity for MsrA reduction could explain why Sec is utilized in Clostridium Grx and more generally provides a novel example of the use of Sec in biological systems.  相似文献   

14.
Methionine residues in proteins are susceptible to oxidation, and the resulting methionine sulfoxides can be reduced back to methionines by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). Herein, we have identified two MsrB families that differ by the presence of zinc. Evolutionary analyses suggested that the zinc-containing MsrB proteins are prototype enzymes and that the metal was lost in certain MsrB proteins later in evolution. Zinc-containing Drosophila MsrB was further characterized. The enzyme was found to employ a catalytic Cys(124) thiolate, which directly interacted with methionine sulfoxide, resulting in methionine and a Cys(124) sulfenic acid intermediate. A subsequent reaction of this intermediate with Cys(69) generated an intramolecular disulfide. Dithiothreitol could reduce either the sulfenic acid or the disulfide, but the disulfide was a preferred substrate for thioredoxin, a natural electron donor. Interestingly, the C69S mutant could complement MsrA/MsrB deficiency in yeast, and the corresponding natural form of mouse MsrB was active with thioredoxin. These data indicate that MsrB proteins employ alternative mechanisms for sulfenic acid reduction. Four other conserved cysteines in Drosophila MsrB (Cys(51), Cys(54), Cys(101), and Cys(104)) were found to coordinate structural zinc. Mutation of any one or a combination of these residues resulted in complete loss of metal and catalytic activity, demonstrating an essential role of zinc in Drosophila MsrB. In contrast, two conserved histidines were important for thioredoxin-dependent activity, but were not involved in zinc binding. A Drosophila MsrA gene was also cloned, and the recombinant enzyme was found to be metal-free and specific for methionine S-sulfoxide and to employ a similar sulfenic acid/disulfide mechanism.  相似文献   

15.
Selenocysteine (Sec) residues occur in thiol oxidoreductase families, and functionally characterized selenoenzymes typically have a single Sec residue used directly for redox catalysis. However, how new Sec residues evolve and whether non-catalytic Sec residues exist in proteins is not known. Here, we computationally identified several genes with multiple Sec insertion sequence (SECIS) elements, one of which was a methionine-R-sulfoxide reductase (MsrB) homolog from Metridium senile that has four in-frame UGA codons and two nearly identical SECIS elements. One of the UGA codons corresponded to the conserved catalytic Sec or Cys in MsrBs, whereas the three other UGA codons evolved recently and had no homologs with Sec or Cys in these positions. Metabolic (75)Se labeling showed that all four in-frame UGA codons supported Sec insertion and that both SECIS elements were functional and collaborated in Sec insertion at each UGA codon. Interestingly, recombinant M. senile MsrB bound iron, and further analyses suggested the possibility of binding an iron-sulfur cluster by the protein. These data show that Sec residues may appear transiently in genes containing SECIS elements and be adapted for non-catalytic functions.  相似文献   

16.
The citrus phospholipid hydroperoxide glutathione peroxidase (cit-PHGPx) was the first plant peroxidase demonstrated to exhibit PHGPx-specific enzymatic activity, although it was 500-fold weaker than that of the pig heart analog. This relatively low activity is accounted for the catalytic residue of cit-PHGPx, which was found to be cysteine and not the rare selenocysteine (Sec) present in animal enzymes. Sec incorporation into proteins is encoded by a UGA codon, usually a STOP codon, which, in prokaryotes, is suppressed by an adjacent downstream mRNA stem-loop structure, the Sec insertion sequence (SECIS). By performing appropriate nucleotide substitutions into the gene encoding cit-PHGPx, we introduced bacterial-type SECIS elements that afforded the substitution of the catalytic Cys(41) by Sec, as established by mass spectrometry, while preserving the functional integrity of the peroxidase. The recombinant enzyme, whose synthesis is selenium-dependent, displayed a 4-fold enhanced peroxidase activity as compared with the Cys-containing analog, thus confirming the higher catalytic power of Sec compared with Cys in cit-PHGPx active site. The study led also to refinement of the minimal sequence requirements of the bacterial-type SECIS, and, for the first time, to the heterologous expression in Escherichia coli of a eukaryotic selenoprotein containing a SECIS in its open reading frame.  相似文献   

17.
Thioredoxin (Trx) and thioredoxin reductase (TrxR) function as antioxidant and anti-apoptotic proteins, which are often up-regulated in drug-resistant cancer cells. (-)-epigallocatechin-3-gallate (EGCG) is a naturally occurring antioxidant in green tea, but also exhibits prooxidant and apoptosis-inducing properties. We have previously showed a linkage between EGCG-induced inactivation of TrxR and decreased cell survival, revealing TrxR as a new target of EGCG. However, the molecular events underlying the importance of Trx/TrxR in EGCG-induced cytotoxicity remain unclear. Here, we show that the crosstalk between EGCG and Trx/TrxR occurred in a redox-dependent manner, and EGCG induced inactivation of Trx/TrxR in parallel with increased ROS levels in HeLa cells. Moreover, EGCG displayed great reactivity with Cys/Sec residues that have low pK(a) values. The structure of EGCG suggests that its quinone form would readily react with thiolate and selenolate nucleophiles. Using mass spectrometry, we have demonstrated the formation of EGCG-Trx1 (Cys(32)) and EGCG-TrxR (Cys/Sec) conjugates, confirming that EGCG quinone specifically conjugates with active-site Cys(32) in Trx or C-terminal Cys/Selenocysteine (Sec) couple in TrxR under conditions where Trx/TrxR are reduced. Non-reduced form of Trx/TrxR could escape from EGCG inhibition. These data reveal a potential mechanism for enhancing EGCG-induced cancer cell death by the NADPH-dependent reduction of Trx/TrxR.  相似文献   

18.
Thioredoxin (Trx) is a highly conserved and multi-functional protein that plays a pivotal role in maintaining the redox state of the cell and in protecting the cell against oxidative stress. Trx gene from Antarctic sea-ice bacteria Pseudoalteromonas sp. AN178 was cloned and expressed as soluble protein in Escherichia coli (designated as PsTrx). Trx gene consisted of an open reading frame of 324-bp nucleotides encoding a protein of 108 amino acids with a calculated molecular mass of 11.88 kDa. The deduced protein included the conserved Cys–Gly–Pro–Cys active-site sequence. After purification by a single step Ni–NTA affinity chromatography, recombinant PsTrx with a high specific activity of 96.67 U/mg was obtained. The purified PsTrx had an optimal temperature and pH of 25 °C and 7.0, respectively, and showed about 55 % of the residual catalytic activity even at 0–10 °C. It had high tolerance to a wide range of NaCl concentrations (0–2 M NaCl) and was stable in the presence of H2O2. This research suggested that PsTrx displayed unique catalytic properties.  相似文献   

19.
Two distinct stereospecific methionine sulfoxide reductases (Msr), MsrA and MsrB reduce the oxidized methionine (Met), methionine sulfoxide [Met(O)], back to Met. In this report, we examined the reducing systems required for the activities of two chloroplastic MsrB enzymes (NtMsrB1 and NtMsrB2) from tobacco (Nicotiana tabacum). We found that NtMrsB1, but not NtMsrB2, could use dithiothreitol as an efficient hydrogen donor. In contrast Escherichia coli thioredoxin (Trx) could serve as a reducing agent for NtMsrB2, but not for NtMsrB1. Similar to previously reported human Trx-independent hMsrB2 and hMsrB3, NtMsrB1 could also use bovine liver thionein and selenocysteamine as reducing agents. Furthermore, the unique plant Trx-like protein CDSP32 was shown to reduce NtMsrB1, hMsrB2 and hMsrB3. All these tested Trx-independent MsrB enzymes lack an additional cysteine (resolving cysteine) that is capable of forming a disulfide bond on the enzyme during the catalytic reaction. Our results indicate that plant and animal MsrB enzymes lacking a resolving cysteine likely share a similar reaction mechanism.  相似文献   

20.
Methionine sulfoxide reductases (Msr) reduce methionine sulfoxide (MetSO)-containing proteins, back to methionine (Met). MsrAs are stereospecific for the S epimer whereas MsrBs reduce the R epimer of MetSO. Although structurally unrelated, the Msrs characterized so far display a similar catalytic mechanism with formation of a sulfenic intermediate on the catalytic cysteine and a concomitant release of Met, followed by formation of at least one intramolecular disulfide bond (between the catalytic and a recycling cysteine), which is then reduced by thioredoxin. In the case of the MsrA from Escherichia coli, two disulfide bonds are formed, i.e. first between the catalytic Cys51 and the recycling Cys198 and then between Cys198 and the second recycling Cys206. Three crystal structures including E. coli and Mycobacterium tuberculosis MsrAs, which, for the latter, possesses only the unique recycling Cys198, have been solved so far. In these structures, the distances between the cysteine residues involved in the catalytic mechanism are too large to allow formation of the intramolecular disulfide bonds. Here structural and dynamical NMR studies of the reduced wild-type and the oxidized (Cys51-Cys198) forms of C86S/C206S MsrA from E. coli have been carried out. The mapping of MetSO substrate-bound C51A MsrA has also been performed. The data support (1) a conformational switch occurring subsequently to sulfenic acid formation and/or Met release that would be a prerequisite to form the Cys51-Cys198 bond and, (2) a high mobility of the C-terminal part of the Cys51-Cys198 oxidized form that would favor formation of the second Cys198-Cys206 disulfide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号