首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wilusz CJ  Wilusz J 《Molecular cell》2007,25(4):485-487
In this issue of Molecular Cell, demonstrate that the RNA binding protein HuR selectively up- or downregulates the stability of the SIRT1 mRNA (which encodes an important regulatory deacetylase) depending upon phosphorylation by Chk2.  相似文献   

2.
3.
4.
5.
6.
Hu antigen R (HuR) regulates stress responses through stabilizing and/or facilitating the translation of target mRNAs. The human TRA2β gene encodes splicing factor transformer 2β (Tra2β) and generates 5 mRNA isoforms (TRA2β1 to -5) through alternative splicing. Exposure of HCT116 colon cancer cells to sodium arsenite stimulated checkpoint kinase 2 (Chk2)- and mitogen-activated protein kinase p38 (p38MAPK)-mediated phosphorylation of HuR at positions S88 and T118. This induced an association between HuR and the 39-nucleotide (nt) proximal region of TRA2β exon 2, generating a TRA2β4 mRNA that includes exon 2, which has multiple premature stop codons. HuR knockdown or Chk2/p38MAPK double knockdown inhibited the arsenite-stimulated production of TRA2β4 and increased Tra2β protein, facilitating Tra2β-dependent inclusion of exons in target pre-mRNAs. The effects of HuR knockdown or Chk2/p38MAPK double knockdown were also confirmed using a TRA2β minigene spanning exons 1 to 4, and the effects disappeared when the 39-nt region was deleted from the minigene. In endogenous HuR knockdown cells, the overexpression of a HuR mutant that could not be phosphorylated (with changes of serine to alanine at position 88 [S88A], S100A, and T118A) blocked the associated TRA2β4 interaction and TRA2β4 generation, while the overexpression of a phosphomimetic HuR (with mutations S88D, S100D, and T118D) restored the TRA2β4-related activities. Our findings revealed the potential role of nuclear HuR in the regulation of alternative splicing programs under oxidative stress.  相似文献   

7.
8.
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth.  相似文献   

9.
Bone marrow–derived monocytes/macrophages (BMMs) play a vital role in liver inflammation and fibrogenesis. Cannabinoid receptor 1 (CB1) mediates the recruitment of BMMs into the injured liver. In this study, we revealed the molecular mechanisms under CB1-mediated BMM infiltration. Carbon tetrachloride (CCl4) was employed to induce mouse liver injury. In vivo, human antigen R (HuR) was upregulated in macrophages of injured liver. HuR messenger RNA (mRNA) expression was positively correlated with CB1 and F4/80 mRNA expression. Furthermore, we detected the binding between HuR and CB1 mRNA in CCl4-treated livers. In vitro, HuR modulated arachidonyl-2′-chloroethylamide (ACEA, CB1 agonist)-induced BMM migration by regulating CB1 expression. HuR promoted CB1 expression via binding to CB1 mRNA. ACEA promoted the association between HuR and CB1 mRNA via inducing HuR nucleoplasmic transport. In the cytoplasm, HuR competed with the miR-29 family to improve CB1 expression and BMM migration. In conclusion, our results prove that HuR regulates CB1 expression and influences ACEA-induced BMM migration by competing with miR-29 family.  相似文献   

10.
Excessive superoxide (O(-)(2)) formation is toxic to cells and organisms. O(-)(2) reacts with either iron-sulfur centers or cysteines (Cys) of cytoplasmic proteins. Reactions with membrane proteins, however, have not been fully characterized. In the present studies, the reaction of O(-)(2) with a protein complex that has glutamate/N-methyl-D-aspartate (NMDA) receptor characteristics and with one of the subunits of this complex was examined. Exposure of the complex purified from neuronal membranes and the recombinant glutamate-binding protein (GBP) subunit of this complex to the O(-)(2)-generating system of xanthine (X) plus xanthine oxidase (XO) caused strong inhibition of L-[3H]glutamate binding. Inhibition of glutamate binding to the complex and GBP by O(-)(2) was greater than that produced by H(2)O(2), another product of the X plus XO reaction. Mutation of two cysteine (Cys) residues in recombinant GBP (Cys(190,191)) eliminated the effect of O(-)(2) on L-[3H]glutamate binding. Both S-thiolation reaction of GBP in synaptic membranes with [35S]cystine and reaction of Cys residues in GBP with [3H]NEM were significantly decreased after exposure of membranes to O(-)(2). Inhibition of cysteylation of membrane GBP by O(-)(2) was still observed after iron chelation by desferrioxamine, albeit diminished, and was not altered by the presence of catalase. Overall, the results indicated that GBP exposure to O(-)(2) modified Cys residues in this protein. The modification was not characterized but it was probably that of disulfide formation.  相似文献   

11.
Snail functions as a key regulator in the induction of a phenotypic change called epithelial to mesenchymal transition (EMT). Aberrant expression of Snail prevails in the onset and development of tumor. Here, we have observed increased expression of Snail under the treatment of hydrogen peroxide (H(2)O(2)). Investigation into the underlying mechanisms revealed that stabilization of Snail mRNA contributes partially to this process. H(2)O(2)-induced the luciferase activity of the reporter construct contains the 3'UTR of Snail. Deletion of the AU-rich elements in the UTR eliminated the response of the reporter to H(2)O(2), suggesting the potential role of HuR in the process. Lowering of endogenous HuR levels through knockdown of HuR by siRNA greatly reduced the inducability and half-life of Snail mRNA, which consequently inhibited the downregulation of E-cadherin by H(2)O(2). Our findings indicate that HuR plays a major role in regulating H(2)O(2)-induced Snail expression by enhancing Snail mRNA stability, which in turn enhances cell migrating ability through repressing expression of E-cadherin.  相似文献   

12.
TRH receptors have been solubilized from GH4C1 cells using the plant glycoside digitonin. Solubilized receptors retain the principal binding characteristics exhibited by the TRH receptor in intact pituitary cells and their membranes. The binding of the methylhistidyl derivative of TRH [( 3H]MeTRH) attained equilibrium within 2-3 h at 4 C, and it was reversible, dissociating with a t1/2 of 7 h. Analysis of [3H]MeTRH binding to soluble receptors at 4 C yielded a dissociation constant (Kd) of 3.8 nM and a total binding capacity (Bmax) of 3.9 pmol/mg protein. Peptides known to interact with non-TRH receptors on GH cells failed to interfere with the binding of [3H]MeTRH, indicating that the TRH binding was specific. Chlordiazepoxide, a competitive antagonist for TRH action in GH cells, inhibited TRH binding to soluble receptors with an IC50 of 11 microM. When [3H]MeTRH was bound to membranes and the membrane proteins were then solubilized, we found enhanced dissociation of the prebound [3H]MeTRH from its solubilized receptor by guanyl nucleotides. Maximal enhancement of [3H]MeTRH dissociation by 10 microM GTP gamma S occurred within about 45 min at 22 C. GTP gamma S, GTP, GDP beta S, and GDP were all effectors of [3H]MeTRH dissociation, exhibiting EC50s in the range of 14-450 nM. The rank order of potency of the tested nucleotides was GTP gamma S greater than GTP congruent to GDP beta S greater than GDP much greater than ATP gamma S greater than GMP. We conclude that TRH receptors have been solubilized from GH cells with digitonin and retain the binding characteristics of TRH receptors in intact pituitary cells. Furthermore, prebinding [3H]MeTRH to GH4C1 cell membranes results in the solubilization of a complex in which the TRH receptor is linked functionally to a GTP binding protein.  相似文献   

13.
The Ah receptor, a soluble cytoplasmic receptor that regulates induction of cytochrome P450IA1 and mediates toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was detected and characterized in the continuous human liver cell line Hep G2. The mean concentration of specific binding sites for TCDD was 112 +/- 26 (SEM) fmol/mg cytosol protein as determined in eight separate cytosol preparations in the presence of sodium molybdate. This is equivalent to 14,000 binding sites per cell, approximately 40% of the sites per cell found in the mouse hepatoma line Hepa-1. The cytosolic Ah receptor from Hep G2 cells sedimented at 9 S and was specific for those halogenated and nonhalogenated aromatic compounds known to be agonists for the Ah receptor in rodent tissues and cells. Specific binding in the 9 S region was detected with both [3H]TCDD and 3-[3H]methylcholanthrene. 3-[3H]Methylcholanthrene did not bind to any component besides that at approximately 9 S. Phenobarbital, dexamethasone, and estradiol did not compete with [3H]TCDD for binding to the Hep G2 Ah receptor. Specific binding of [3H]triamcinolone acetonide to glucocorticoid receptor could also be demonstrated in Hep G2 cytosol. The apparent equilibrium dissociation constant (Kd) for binding of [3H]TCDD to Hep G2 Ah receptor was 9 nM by Woolf plot analysis, about an order of magnitude weaker than the affinity of [3H]TCDD for the mouse Hepa-1 Ah receptor or for the C57BL/6 murine hepatic Ah receptor. [3H]TCDD.Ah receptor complex, which was extracted from nuclei of Hep G2 cells incubated with [3H]TCDD at 37 degrees C in culture, sedimented at approximately 6 S under conditions of high ionic strength. Aryl hydrocarbon hydroxylase (AHH) activity was significantly induced after 24 h of incubation with polycyclic aromatic hydrocarbons: the EC50 for AHH induction was 5.3 microM for benz(a)anthracene and 1.3 microM for 3-methylcholanthrene. Modification of the preparative technique for cell cytosol, especially inclusion of 20 mM sodium molybdate in homogenizing and other buffers, was necessary to detect cytosolic Hep G2 Ah receptor. Hep G2 cells appear to conserve drug-metabolizing activity associated with cytochrome P450IA1 as well as the receptor mechanism which regulates its induction.  相似文献   

14.
All mammalian cells depend on polyamines for normal growth and proliferation, but the exact roles of polyamines at the molecular level remain largely unknown. The RNA-binding protein HuR modulates the stability and translation of many target mRNAs. Here, we show that in rat intestinal epithelial cells (IECs), polyamines enhanced HuR association with the 3′-untranslated region of the c-Myc mRNA by increasing HuR phosphorylation by Chk2, in turn promoting c-Myc translation. Depletion of cellular polyamines inhibited Chk2 and reduced the affinity of HuR for c-Myc mRNA; these effects were completely reversed by addition of the polyamine putrescine or by Chk2 overexpression. In cells with high content of cellular polyamines, HuR silencing or Chk2 silencing reduced c-Myc translation and c-Myc expression levels. Our findings demonstrate that polyamines regulate c-Myc translation in IECs through HuR phosphorylation by Chk2 and provide new insight into the molecular functions of cellular polyamines.  相似文献   

15.
The zinc and cadmium thiolate complexes [TmBut]MSCH2C(O)N(H)Ph (M = Zn, Cd) may be obtained via treatment of the respective methyl complex [TmBut]MMe with PhN(H)C(O)CH2SH. The molecular structure of [TmBut]ZnSCH2C(O)N(H)Ph has been determined by X-ray diffraction, thereby demonstrating the presence of an intramolecular N-H S hydrogen bond between the amide N-H group and thiolate sulfur atom. [TmBut]ZnSCH2C(O)N(H)Ph mimics the function of the Ada DNA repair protein by undergoing alkylation with MeI to give [TmBut]ZnI and MeSCH2C(O)N(H)Ph. A series of crossover experiments and 1H NMR magnetization transfer studies establish that thiolate exchange between [TmR]ZnSR' derivatives is facile in this system, an observation that supports the previous suggestion that the alkylation of [TmPh]ZnSCH2C(O)N(H)Ph by MeI may proceed via a sequence that involves dissociation of [PhN(H)C(O)CH2S]-.  相似文献   

16.
meta-Azi-propofol (AziPm) is a photoactive analog of the general anesthetic propofol. We photolabeled a myelin-enriched fraction from rat brain with [3H]AziPm and identified the sirtuin deacetylase SIRT2 as a target of the anesthetic. AziPm photolabeled three SIRT2 residues (Tyr139, Phe190, and Met206) that are located in a single allosteric protein site, and propofol inhibited [3H]AziPm photolabeling of this site in myelin SIRT2. Structural modeling and in vitro experiments with recombinant human SIRT2 determined that propofol and [3H]AziPm only bind specifically and competitively to the enzyme when co-equilibrated with other substrates, which suggests that the anesthetic site is either created or stabilized in enzymatic conformations that are induced by substrate binding. In contrast to SIRT2, specific binding of [3H]AziPm or propofol to recombinant human SIRT1 was not observed. Residues that line the propofol binding site on SIRT2 contact the sirtuin co-substrate NAD+ during enzymatic catalysis, and assays that measured SIRT2 deacetylation of acetylated α-tubulin revealed that propofol inhibits enzymatic function. We conclude that propofol inhibits the mammalian deacetylase SIRT2 through a conformation-specific, allosteric protein site that is unique from the previously described binding sites of other inhibitors. This suggests that propofol might influence cellular events that are regulated by protein acetylation state.  相似文献   

17.
RNA结合蛋白HuR可以结合并调控靶标mRNA稳定性与翻译,但影响HuR 结合活性的因素有待探讨。本研究从蛋白质-蛋白质相互作用角度对影响HuR 与RNA结合活性的因素做了探讨。结果发现,热激蛋白Hsp72在细胞浆与HuR相互作用并促进HuR与p21 (KIP1) 3′UTR(3′非翻译区)的结合; 热休克下Hsp72总蛋白质及细胞浆蛋白质水平上调、但HuR总蛋白质及细胞浆蛋白质水平不变|热休克下HuR与p21 3′UTR的相互作用加强、p21蛋白及mRNA水平上调。上述结果提示,Hsp72可通过与HuR相互作用促进后者与p21 mRNA的结合,进而加强热休克下HuR对p21的表达的促进作用。这些结果为进一步解析HuR的生物学作用机制提供了实验依据。  相似文献   

18.
19.
20.
Binding to gamma-aminobutyric acid-A (GABAA) receptors was studied in synaptosomal membranes of rat brain. Dissociation of [3H]muscimol and the GABAA antagonist [3H]2-(3-carboxypropyl)-3-amino-6-p-methoxyphenylpyridazinium bromide ([3H]SR 95531) binding elicited by 100-fold dilution was accelerated by excess of GABA or SR 95531. Control dissociation might be retarded by rebinding. The contribution of a rapid first phase of dissociation of the agonist [3H]muscimol was preferentially enhanced by SR 95531. In contrast, the dissociation of [3H]SR 95531 binding was preferentially accelerated by GABA. These opposite preferential accelerations can be explained by negative heterotropic cooperativity and a reversed affinity relationship of agonists and antagonists to GABAA binding sites with different affinities. Modification of the membranes by p-diazobenzenesulfonic acid (DSA) selectively decreased the accelerating effect of GABA on the dissociation of [3H]SR 95531 binding. [3H]Strychnine binding was studied in a membrane preparation of rat spinal cord. The dissociation of the antagonist [3H]strychnine elicited by dilution was preferentially accelerated by glycine. Again, pretreatment with DSA decreased selectively this negative heterotropic (i.e., allosteric) interaction. Chemical modification by DSA might be attributed to tyrosine residues responsible for similar allosteric interactions for the GABA- and glycine-gated chloride channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号