首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To evaluate the distribution of Bacillus thuringiensis strains from maize and bean phylloplane and their respective soils. METHODS AND RESULTS: B. thuringiensis was isolated from the phylloplane and soil of maize and bean from three municipalities in Antioquia, Colombia. Ninety six samples of phylloplane and 24 of soil were analyzed. A total of 214 isolates were obtained from 96 phylloplane samples while 59 isolates were recovered from 24 soil samples. Sixty five per cent and 12% of the phylloplane and soil isolates, respectively, showed activity against Spodoptera frugiperda. These isolates contained delta-endotoxin proteins of 57 and 130 kDa. The most toxic isolates against S. frugiperda had the genotype cry1Aa, cry1Ac, cry1B, and cry1D. In contrast, 27% of the phylloplane isolates and 88% of the soil isolates were active against Culex quinquefasciatus and had protein profiles similar to B. thuringiensis serovar. medellin and B. thuringiensis serovar. israelensis. The most active isolates contain cry4 and cry11 genes. CONCLUSIONS: The predominant population of B. thuringiensis on the phylloplane harbored the cry1 gene and was active against S. frugiperda, whereas in soil, isolates harboring cry11 gene and active against C. quinquefasciatus were the majority. SIGNIFICANCE AND IMPACT OF THE STUDY: The predominance of specific B. thuringiensis populations, both on the leaves and in the soil, suggests the presence of selection in B. thuringiensis populations on the studied environment.  相似文献   

2.
AIMS: To identify and characterize Bacillus thuringiensis strains highly toxic to Spodoptera frugiperda, and to explore the genetic diversity of such strains. METHODS AND RESULTS: The insecticidal activity of 1100 strains of B. thuringiensis from Colombian soil samples was assayed against first instar S. frugiperda larvae, and 32 active strains were found. After a second bioassay evaluation, the eight most potent strains were selected for further characterization, which included crystal protein profiles determined by polyacrylamide gel electrophoresis, plasmid profile, plasmid restriction patterns, cry gene composition, qualitative determination of beta-exotoxin production, random amplified polymorphic DNA, serotyping, and toxicity to S. frugiperda. All Colombian strains contained cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C and cry1D genes. However, PCR profiles of the Colombian strains suggested the presence of variants of the cry1 genes. Serotyping indicated that these strains belong to the kurstaki, thuringiensis, canadiensis and indiana subspecies. Interestingly, three strains belonging to different serotypes and subspecies were found in the same soil sample, and toxicity ranged between 11 and 976 ng cm(-2) of diet. CONCLUSIONS: It has been shown that B. thuringiensis strains belonging to different serotypes and displaying variable potency to S. frugiperda larvae can be found in the same soil sample. SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained indicate that some of the B. thuringiensis strains studied could be of interest for further development for S. frugiperda control programmes.  相似文献   

3.
Chang  Roh  Je  Park  Jin  Woo  & Kang 《Letters in applied microbiology》1998,26(5):387-390
A strain of Bacillus thuringiensis, STB-1, toxic against Spodoptera exigua , was isolated. Bacillus thuringiensis STB-1 produced bipyramidal inclusions and reacted with the H antiserum of B. thuringiensis ssp. kurstaki . The plasmid and protein profiles of B. thuringiensis STB-1 were compared with those of its reference strains, ssp. kurstaki and ssp. kenyae . To verifiy the gene type of B. thuringiensis STB-1, PCR analysis was performedwith Spodoptera -specific cry gene primers. The result showed that B. thuringiensis STB-1, unlike its reference strains, had cry1Aa , cry1Ab , cry1Ac and cry1E , suggesting that B. thuringiensis STB-1 was a unique strain with respect to gene type. In addition, B. thuringiensis STB-1 showed a high level of toxicity against both S. exigua and Bombyx mori , whereas B. thuringiensis ssp. kurstaki HD-1 or ssp. kenyae showed a high level of toxicity against only Bombyx mori or S. exigua , respectively.  相似文献   

4.
The use of Bacillus thuringiensis as a biopesticide is a viable alternative for insect control since the insecticidal Cry proteins produced by these bacteria are highly specific; harmless to humans, vertebrates, and plants; and completely biodegradable. In addition to Cry proteins, B. thuringiensis produces a number of extracellular compounds, including S-layer proteins (SLP), that contribute to virulence. The S layer is an ordered structure representing a proteinaceous paracrystalline array which completely covers the surfaces of many pathogenic bacteria. In this work, we report the identification of an S-layer protein by the screening of B. thuringiensis strains for activity against the coleopteran pest Epilachna varivestis (Mexican bean beetle; Coleoptera: Coccinellidae). We screened two B. thuringiensis strain collections containing unidentified Cry proteins and also strains isolated from dead insects. Some of the B. thuringiensis strains assayed against E. varivestis showed moderate toxicity. However, a B. thuringiensis strain (GP1) that was isolated from a dead insect showed a remarkably high insecticidal activity. The parasporal crystal produced by the GP1 strain was purified and shown to have insecticidal activity against E. varivestis but not against the lepidopteran Manduca sexta or Spodoptera frugiperda or against the dipteran Aedes aegypti. The gene encoding this protein was cloned and sequenced. It corresponded to an S-layer protein highly similar to previously described SLP in Bacillus anthracis (EA1) and Bacillus licheniformis (OlpA). The phylogenetic relationships among SLP from different bacteria showed that these proteins from Bacillus cereus, Bacillus sphaericus, B. anthracis, B. licheniformis, and B. thuringiensis are arranged in the same main group, suggesting similar origins. This is the first report that demonstrates that an S-layer protein is directly involved in toxicity to a coleopteran pest.  相似文献   

5.
AIM: To evaluate the genetic and molecular diversity and insecticidal activity of Bacillus thuringiensis isolates from all the natural regions of Colombia. METHODS AND RESULTS: A total of 445 isolates from a collection of B. thuringiensis were characterized. The parasporal crystal morphology that was most abundant was bipyramidal (60%). Almost 10% of the isolates were toxic to Spodoptera frugiperda and 5.6% against Culex quinquefasciatus larvae. cry gene content determined by PCR indicated that 10.6% of the isolates contained cry1 genes and 1.1% contained cry2, cry4 or cry11 genes. Protein content of the parasporal crystal was determined by SDS-PAGE; 25 and 18 different protein profiles were found in isolates active against S. frugiperda and C. quinquefasciatus, respectively. CONCLUSIONS: Bacillus thuringiensis presents great genetic and molecular diversity even in isolates from the same soil sample. Moreover, the diversity and activity of the isolates might have a relationship with the geographical origin of the samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained here indicate that some of the B. thuringiensis isolates characterized in this study are potential control agents that could be used in programmes against mosquitoes and S. frugiperda.  相似文献   

6.
A 4.0-kb BamHI-HindIII fragment encoding the cryIIA operon from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki was cloned into Escherichia coli. The nucleotide sequence of the 2.2-kb AccI-HindIII fragment containing the NRD-12 cryIIA gene was identical to the HD-1 and HD-263 cryIIA gene sequences. Expression of cryIIA and subsequent purification of CryIIA inclusion bodies resulted in a protein with insecticidal activity against Heliothis virescens, Trichoplusia ni, and Culex quinquefasciatus but not Spodoptera exigua. The 4.0-kb BamII-HindIII fragment encoding the cryIIA operon was inserted into the B. thuringiensis-E. coli shuttle vector pHT3101 (pMAU1). pMAU1 was used to transform an acrystalliferous HD-1 strain of B. thuringiensis subsp. kurstaki and a leaf-colonizing strain of B. cereus (BT-8) by using electroporation. Spore-crystal mixtures from both transformed strains were toxic to H. virescens and T. ni but not Helicoverpa zea or S. exigua.  相似文献   

7.
Entomopathogenic bacteria isolated from Simulium larvae and adults from breeding sites in the states of S?o Paulo and Rio de Janeiro, Brazil, were identified as 18 strains of Bacillus thuringiensis and one of B. sphaericus. Most of these strains were serotyped according to their flagellar antigens. However, nine of the B. thuringiensis samples, could not be serotyped and were designated as "autoagglutinating"; they were also shown to be toxic in preliminary tests against Aedes aegypti larvae. Additionally, B. sphaericus was also shown to be toxic towards Culex quinquefasciatus larvae.  相似文献   

8.
Bacillus thuringiensis subsp. aizawai HD133 is one of several strains particularly effective against Plodia interpunctella selected for resistance to B. thuringiensis subsp. kurstaki HD1 (Dipel). B. thuringiensis subsp. aizawai HD133 produces inclusions containing three protoxins, CryIA(b), CryIC, and CryID, and the CryIC protoxin has been shown to be active on resistant P. interpunctella as well as on Spodoptera larvae. The CryIA(b) protoxin is very similar to the major one in B. thuringiensis subsp. kurstaki HD1, and as expected, this protoxin was inactive on resistant P. interpunctella. A derivative of B. thuringiensis subsp. aizawai HD133 which had been cured of a 68-kb plasmid containing the cryIA(b) gene produced inclusions comprising only the CryIC and CryID protoxins. Surprisingly, these inclusions were much less toxic for resistant P. interpunctella and two other Lepidoptera than those produced by the parental strain, whereas the soluble protoxins from these strains were equally effective. In contrast, inclusions from the two strains were about as active as soluble protoxins for Spodoptera frugiperda larvae, so toxicity differences between inclusions may be due to the solubilizing conditions within particular larval guts. Consistent with this hypothesis, it was found that a higher pH was required to solubilize protoxins from inclusions from the plasmid-cured strain than from B. thuringiensis subsp. aizawai HD133, a difference which is probably attributable to the absence of the CryIA(b) protoxin in the former. The interactions of structurally related protoxins within an inclusion are probably important for solubility and are thus another factor in the effectiveness of B. thuringiensis isolates for particular insect larvae.  相似文献   

9.
Both the standard Bacillus thuringiensis kurstaki (HD-1) and the formulated commercial product resulted from this strain have shown limited pathogenicity against the tobacco cutworm (Spodoptera litura). However, two new isolates of Bacillus thuringiensis (K-2074 and K-2178) isolated from Taiwan have been identified through an active screening program to be highly pathogenic against the tobacco cutworm. In this paper, we present results of characterization and the pathogenicity of these two new isolates.  相似文献   

10.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

11.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

12.
Bacillus thuringiensis strains isolated from Latin American soil samples that showed toxicity against three Spodoptera frugiperda populations from different geographical areas (Mexico, Colombia, and Brazil) were characterized on the basis of their insecticidal activity, crystal morphology, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of parasporal crystals, plasmid profiles, and cry gene content. We found that the different S. frugiperda populations display different susceptibilities to the selected B. thuringiensis strains and also to pure preparations of Cry1B, Cry1C, and Cry1D toxins. Binding assays performed with pure toxin demonstrated that the differences in the toxin binding capacities of these insect populations correlated with the observed differences in susceptibility to the three Cry toxins analyzed. Finally, the genetic variability of the three insect populations was analyzed by random amplification of polymorphic DNA-PCR, which showed significant genetic diversity among the three S. frugiperda populations analyzed. The data presented here show that the genetic variability of S. frugiperda populations should be carefully considered in the development of insect pest control strategies, including the deployment of genetically modified maize in different geographical regions.  相似文献   

13.
Park  Roh  Je  Jin  Oh  Park  & Kang 《Letters in applied microbiology》1998,27(1):62-66
Bacillus thuringiensis strains non-toxic to Lepidoptera, Bombyx mori and Diptera, Culex pipiens pallens larvae were isolated from Korean soil samples during an investigation of B. thuringiensis isolates highly toxic to insect pests. One of these isolates, NTB-88, produces parasporal inclusions about 138 kDa in size and is non-toxic to 19 insect species of three orders, Lepidoptera, Diptera and Coleoptera, even though it is highly susceptible to tryptic cleavage. Study of flagellar (H) antibodies of 33 B. thuringiensis strains revealed that NTB-88 has an H antigen identical with that of subsp. morrisoni (serotype 8a8b). Comparison of parasporal inclusion proteins and plasmid DNA patterns of strain NTB-88 with B. thuringiensis subsp. morrisoni HD-12 and B. thuringiensis subsp. morrisoni PG-14 showed that the isolate is a novel non-insecticidal B. thuringiensis strain belonging to serotype 8a8b.  相似文献   

14.
Integrative plasmids were constructed to enable integration of foreign DNA into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Integration of the aphA3 kanamycin resistance gene by a two-step procedure demonstrated that this strategy was applicable with antibiotic resistance selection. Hybridization experiments evidenced two copies of the operon encoding the binary toxin from B. sphaericus in the recipient strain. The Bacillus thuringiensis subsp. israelensis cry11Aal gene (referred to as cry11A), encoding a delta-endotoxin with toxicity against Culex, Aedes, and Anopheles larvae, was integrated either by a single crossover event [strain 2297 (::pHT5601), harboring the entire recombinant plasmid] or by two successive crossover events [strain 2297 (::cry11A)]. The level of the Cry11A production in B. sphaericus was high; two crystalline inclusions were produced in strain 2297 (::pHT5601). Synthesis of the Cry11A toxin conferred toxicity to the recombinant strains against Aedes aegypti larvae, for which the parental strain was not toxic. Interestingly, the level of larvicidal activity of strain 2297 (::pHT5601) against Anopheles stephensi was as high as that of B. thuringiensis subsp. israelensis and suggested synergy between the B. thuringiensis and B. sphaericus toxins. The toxicities of parental and recombinant B. sphaericus strains against Culex quinquefasciatus were similar, but the recombinant strains killed the larvae more rapidly. The production of the Cry11A toxin in B. sphaericus also partially restored toxicity for C. quinquefasciatus larvae from a population resistant to B. sphaericus 1593. In vivo recombination therefore appears to be a promising approach to the creation of new B. sphaericus strains for vector control.  相似文献   

15.
The interaction of two cytolytic toxins, Cyt1Ab from Bacillus thuringiensis subsp. medellin and Cyt2Ba from Bacillus thuringiensis subsp. israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericus resistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericus and Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.  相似文献   

16.
Genes encoding insecticidal crystal proteins were cloned from three strains of Bacillus thuringiensis subsp. kenyae and two strains of B. thuringiensis subsp. kurstaki. Characterization of the B. thuringiensis subsp. kenyae toxin genes showed that they are most closely related to cryIA(c) from B. thuringiensis subsp. kurstaki. The cloned genes were introduced into Bacillus host strains, and the spectra of insecticidal activities of each Cry protein were determined for six pest lepidopteran insects. CryIA(c) proteins from B. thuringiensis subsp. kenyae are as active as CryIA(c) proteins from B. thuringiensis subsp. kurstaki against Trichoplusia ni, Lymantria dispar, Heliothis zea, and H. virescens but are significantly less active against Plutella xylostella and, in some cases, Ostrinia nubilalis. The sequence of a cryIA(c) gene from B. thuringiensis subsp. kenyae was determined (GenBank M35524) and compared with that of cryIA(c) from B. thuringiensis subsp. kurstaki. The two genes are more than 99% identical and show seven amino acid differences among the predicted sequences of 1,177 amino acids.  相似文献   

17.
A two-step procedure was used to place a cryIC crystal protein gene from Bacillus thuringiensis subsp. aizawai into the chromosomes of two B. thuringiensis subsp. kurstaki strains containing multiple crystal protein genes. The B. thuringiensis aizawai cryIC gene, which encodes an insecticidal protein highly specific to Spodoptera exigua (beet armyworm), has not been found in any B. thuringiensis subsp. kurstaki strains. The cryIC gene was cloned into an integration vector which contained a B. thuringiensis chromosomal fragment encoding a phosphatidylinositol-specific phospholipase C, allowing the B. thuringiensis subsp. aizawai cryIC to be targeted to the homologous region of the B. thuringiensis subsp. kurstaki chromosome. First, to minimize the possibility of homologous recombination between cryIC and the resident crystal protein genes, B. thuringiensis subsp. kurstaki HD73, which contained only one crystal gene, was chosen as a recipient and transformed by electroporation. Second, a generalized transducing bacteriophage, CP-51, was used to transfer the integrated cryIC gene from HD73 to two other B. thuringiensis subsp. kurstaki stains. The integrated cryIC gene was expressed at a significant level in all three host strains, and the expression of cryIC did not appear to reduce the expression of the endogenous crystal protein genes. Because of the newly acquired ability to produce the CryIC protein, the recombinant strains showed a higher level of activity against S. exigua than did the parent strains. This two-step procedure should therefore be generally useful for the introduction of an additional crystal protein gene into B. thuringiensis strains which have multiple crystal protein genes and which show a low level of transformation efficiency.  相似文献   

18.
我国部分地区土壤中的苏芸金芽孢杆菌和球形芽孢杆菌   总被引:22,自引:4,他引:18  
从云南、贵州、四川和陕西4省的土壤中分离到大量苏芸金芽孢杆菌(Bacillus thuringie—nsis)和球形芽孢杆菌(Bacillus sphaeticus)菌株。血清型分析表明,苏芸金芽孢杆菌分离株分属于23个血清型中的13个血清型,另有近20%的自凝型菌株及部分与所有标准菌抗血清无反应的菌株。对该两种昆虫病原细菌的生态分布规律进行了分析。研究了全部苏芸金芽孢杆菌分离株对鳞翅目、鞘翅目及双翅目的6种昆虫的毒力特性、伴孢晶体与芽孢的形态,以及晶体蛋白质成分。观察和测定了球形芽孢杆菌分离株的形态和毒力,并分析了部分菌株的晶体蛋白质成分。得到22株高效苏芸金芽孢杆菌和2株高效球形芽孢杆菌。证明苏芸金芽孢杆菌是典型的土壤微生物类群,我国西南地区土壤中的苏芸金芽孢杆菌资源十分丰富。  相似文献   

19.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC(50)] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC(50) = 7.9 ng/ml) or B. sphaericus 2362 (LC(50) = 12.6 ng/ml).  相似文献   

20.
AIMS: The aim was to simplify the cumbersome conventional process of isolating virulent bacilli, which involves isolating all bacilli strains from a source followed by screening for strains that are effective for bio-control of mosquito vectors. METHODS: A new simplified technique involving eight steps was devised for screening soil samples for the presence of mosquito-pathogenic bacilli before isolating individual strains. RESULTS: Using the new technique, we obtained eight bacilli strains (KSD1-8) showing pathogenic activity against mosquito larvae from three out of 10 soil samples screened. These strains were characterized, identified and the main bioassay tests were performed with three most promising strains (KSD-4, KSD-7 and KSD-8), and their pathogenic activity against Anopheles stephensi Liston, Culex quinquefasciatus, Say and Aedes aegypti Linnaeus compared well with commercial reference strains of B. thuringiensis israelensis and B. sphaericus. SIGNIFICANCE AND IMPACT OF THE STUDY: The new technique of screening soil samples for the presence of virulent pathogenic strains of bacilli against mosquito larvae proved quick, efficient and cost effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号