首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of rapid freezing and thawing on the survival of 2-cell rabbit embryos was examined. When embryos in 2.2 M-propanediol were directly plunged from room temperature to liquid nitrogen some of them survived after thawing (8%) but only if they had been pretreated by exposure to an impermeable solute, sucrose, that makes the blastomeres shrink osmotically before cooling. High survival (77-88%) in vitro was obtained when pretreated embryos were first held at -30 degrees C for 30-240 min before immersion into liquid nitrogen. Transfer of such frozen-thawed embryos gave a survival rate to live young similar to that obtained with controls (26% and 32% respectively). DMSO was less effective than propanediol; only 2 out of 38 sucrose-pretreated frozen-thawed embryos developed in vitro. The present work shows that a combination of partial dehydration of blastomeres at room temperature with their permeation by a cryoprotective agent offers a simple method for successful rapid freezing and thawing of rabbit embryos.  相似文献   

2.
One-cell mouse embryos were frozen by direct plunging into liquid nitrogen (LN(2)) vapor after equilibration in 3 M ethylene glycol with 0.25 M sucrose (freezing medium) for 5 to 40 minutes. After thawing, the embryos were cultured in vitro and the effects of the equilibration period and dilution method were examined. No significant difference was observed in the in vitro survival of embryos when 0.5 or 1.0 M sucrose was used for the dilution of the cryoprotectant for each equilibration period. The highest survival rate (67.2%) was obtained when the embryos were equilibrated for 10 minutes, and the cryoprotectant diluted with either 0.5 or 1.0 M sucrose after thawing. Shorter (5 minutes) or prolonged (40 minutes) equilibration of embryos in the freezing medium yielded significantly lower survival rates. Dilution by direct transfer of the frozen-thawed embryos into PB1 resulted in lower survival rates than when 0.5 or 1.0 M sucrose was used. The in vitro development to the blastocyst stage of one-cell mouse embryos frozen after 10 minutes equilibration in the freezing medium and diluted after thawing in 0.5 M sucrose was significantly lower than the control (68.0 vs 92.7%). However, transfer of the blastocysts developing from frozen-thawed one-cell mouse embryos into the uterine horns of the recipients resulted in fetal development and implantation rates similar to the control.  相似文献   

3.
The effect of the rate of rewarming on the survival of 8-cell mouse embryos and blastocysts was examined. The samples were slowly cooled (0.3--0.6 degrees C/min) in 1.5 M-DMSO to temperatures between -10 and -80 degrees C before direct transfer to liquid nitrogen (-196 degrees C). Embryos survived rapid thawing (275--500 degrees C/min) only when slow cooling was terminated at relatively high subzero temperatures (-10 to -50 degrees C). The highest levels of survival in vitro of rapidly thawed 8-cell embryos were obtained after transfer to -196 degrees C from -35 and -40 degrees C (72 to 88%) and of rapidly thawed blastocysts after transfer from -25 to -50 degrees C (69 to 74%). By contrast, for embryos to survive slow thawing (8 to 20 degrees C/min) slow cooling to lower subzero temperatures (-60 degrees C and below) was required before transfer to -196 degrees C. The results indicate that embryos transferred to -196 degrees C from high subzero temperatures contain sufficient intracellular ice to damage them during slow warming but to permit survival after rapid warming. Survival of embryos after rapid dilution of DMSO at room temperature was similar to that after slow (stepwise) dilution at 0 degrees C. There was no difference between the viability of rapidly and slowly thawed embryos after transfer to pseudopregnant foster mothers. It is concluded that the behaviour of mammalian embryos subjected to the stresses of freezing and thawing is similar to that of other mammalian cells. A simpler and quicker method for the preservation of mouse embryos is described.  相似文献   

4.
Embryos (8-16 cell) were obtained from random bred albino mice (6-8 weeks old) that were induced to superovulate by injections of 5 I.U. PMSG and 5 I.U. hCG given 48 hr apart. Embryos were exposed to intracellular cryoprotecting medium (glycerol 10%, 1-2 propanediol 20% in PBS) for 10 min and then transferred to extracellular vitrification medium (25% glycerol, 25% 1-2 propanediol in PBS). Vitrification medium containing embryos, and diluent (1 M sucrose) were loaded in a straw and immediately plunged into liquid N2. After thawing at 20 degrees C, the contents of the straw were mixed by shaking (1 step dilution) and emptied in a petri dish. After 3 washings in culture medium the embryos were kept in CO2 incubator for further development. In 3-step dilution procedure the dilution of cryoprotectants was done in 0.5 and 0.25 M sucrose before culture. Embryos in 3-step dilution of cryoprotectants exhibited high survival as compared to 1-step dilution (20.23% vs 6.55%).  相似文献   

5.
Factors affecting the cryosurvival of mouse two-cell embryos   总被引:1,自引:0,他引:1  
A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
S Ogawa  S Tomoda 《Jikken dobutsu》1976,25(4):273-282
Preimplantation stage (16-celled and morula) rabbit embryos were successfully frozen to -196 degrees C. The cooling rate (from a room temperature to 0 degrees C), the presence of the mucin layer surrounding embryos, the ice-seeding treatment and the thawing procedure were examined to determine their effects on the survival of the frozen embryos of Japanese white, New Zealand white and Dutch-Belted rabbits. A high proportion (51%; 16-celled, 69%; morula) of Dutch-Belted rabbit embryos developed in vitro, when they were frozen to -196 degrees C, applying the ice-seeding at -4 degrees C in the presence of 12.5% DMSO, after being cooled to 0 degrees C at the rate of 7-9 degrees C/min, and were diluted by a stepwise addition of 4 different strength PBS on thawing. The highest rate of in vitro development (81%; Japanese white, 75%; New Zealand white, 82%; Dutch Belted embryos) was obtained when the morula stage embryos were frozen to -196 degrees C applying seeding at -4 degrees C after being cooled to 0 degrees C at the rate of 1 degrees C/2.5 min and were diluted, on thawing, by stepwise addition of 6, 3 and 1% DMSO solution and a culture medium. No great difference was found in the survival rate between the embryos covered with the mucin layer and those which had not the coat. All the embryos frozen without applying seeding treatment failed to develop in vitro after being thawed and diluted. Nine out of 27 does each of which received 6 reimplantations of the embryos frozen-thawed became pregnant and were found to be carrying 37 normal fetuses on the 12th day of pregnancy.  相似文献   

7.
The toxic effects of sucrose and the conditions of in-straw glycerol removal after freezing and thawing were studied using Day-3 mouse embryos. At 20 degrees C, exposure to less than or equal to 1.0 M-sucrose for periods up to 30 min had no adverse effects on freshly collected embryos. At 25 and 36 degrees C, however, greater than or equal to 1.0 M-sucrose significantly reduced the developmental potential (P less than 0.001). In the freezing experiments the embryos were placed in 0.5 ml straws containing 40 microliters freezing medium separated by an air bubble from 440 microliters sucrose solution. The straws were frozen rapidly in the vapour about 1 cm above the surface of liquid nitrogen. The post-thaw viability was substantially better after sucrose dilution at 20 degrees C than at 36 degrees C. Mixing the freezing medium with the sucrose diluent immediately after thawing further improved the rate of survival relative to mixing just before freezing (P less than 0.001). The best survival was obtained when the freezing medium contained 3.0 M-glycerol + 0.25 M-sucrose; it was mixed with the diluent after thawing and the glycerol was removed at 20 degrees C. Under such conditions the sucrose concentration in the diluent had no significant effect on the rate of development (0.5 M, 69%; 1.0 M, 73%; 1.5 M, 64%). The results show that during sucrose dilution the temperature should be strictly controlled and suggest that intracellular and extracellular concentrations of glycerol are important in the cryoprotection of embryos.  相似文献   

8.
Mouse morulae were frozen rapidly to -196 degrees C in the presence of glycerol by a two-step procedure; the embryos were transferred directly from -7 degrees C after seeding into liquid nitrogen vapour at -170 to -180 degrees C and then into liquid nitrogen 10-15 min later. Suitable conditions for the survival of embryos frozen with liquid nitrogen vapour were found to be: 2 M-glycerol, 2 M-propylene glycol, 2 M-ethylene glycol; 5-30 min equilibration time at 0 degrees C; 3-60 min holding time in liquid nitrogen vapour; dilution of glycerol with sucrose out of the frozen-thawed embryos; morula and early blastocyst stage embryos. Relatively high survival rates (69-74%) were obtained after rapid freezing by liquid nitrogen vapour. Morulae frozen in this fashion, cultured and transferred to recipients developed into normal young.  相似文献   

9.
T Kojima  T Soma  N Oguri 《Cryobiology》1985,22(5):409-416
The aim of the present study was to examine effects of altering thawing conditions and procedure of addition and dilution of Me2SO on the viability of frozen-thawed rabbit morulae. Five hundred and sixty two rabbit morulae were cooled from room temperature to -80 degrees C at 1 degree C/min in the presence of 1.5 M dimethyl sulfoxide (Me2SO) using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, cooled rapidly, and stored in liquid nitrogen. When Me2SO was added in a single step, the frozen embryos were thawed in ambient air at 40 degrees C/min and Me2SO was diluted in a single step, 99 of 107 (93%) embryos cultured for 48 hr and 12 of 32 (38%) embryos transferred to 6 recipients developed to expanding blastocysts and viable fetuses, respectively. When Me2SO was added in a single step and the frozen embryos were thawed at the same rate and transferred directly without removal of Me2SO to culture media or oviducts of 8 recipients, 67 of 75 (89%) embryos cultured and 12 of 40 (30%) embryos transferred developed to expanding blastocysts and viable fetuses, respectively. There were no significant differences between these survival rates and survival rates obtained by conventional method, i.e., frozen embryos were thawed at 4 degrees C/min by interrupted slow method and Me2SO was added and diluted in a stepwise manner.  相似文献   

10.
应用乙二醇冷冻小鼠胚胎:优化和简化程序的探索   总被引:1,自引:0,他引:1  
提高解冻胚胎的发育能力和简化冷冻解冻程序是胚胎冷冻研究的两大永恒的主题。尽管乙二醇(EG)广泛用于家畜胚胎冷冻,但很少用于冷冻小鼠和人胚胎。为数很少的以EG慢冻小鼠或人胚胎的研究均采用较为复杂的人胚冷冻程序,未见简化程序和用EG冷冻小鼠桑椹胚的报道。采用简单的牛胚胎冷冻程序研究了发育时期、EG浓度、平衡方法、添加蔗糖以及解冻后脱除EG等对小鼠胚胎冻后发育能力的影响。结果显示:(1)致密晚期桑椹胚冻后体外培养囊胚发育率(81.92%±2.24%)和孵出率(68.56%±2.43%)显著(P<0.05)高于4-细胞、8-细胞胚胎和致密早期桑椹胚胎;(2)1.8mol/L EG冷冻小鼠致密晚期桑椹胚的囊胚发育和孵出率显著高于其它浓度;(3)在EG中平衡10min的冻后囊胚发育显著好于平衡5、20或30min;(4)两步平衡冷冻胚胎的囊胚发育率和孵出率显著高于一步平衡;(5)用EG冷冻小鼠胚胎无需添加蔗糖;(6)解冻后可不脱除EG;(7)冻后发育的早期囊胚和囊胚细胞数明显少于体内发育胚胎。因此,用EG冷冻小鼠胚胎的最佳方案为:致密晚期桑椹胚用1.8mol/L EG不添加蔗糖、两步平衡15min、以简单的牛胚胎冷冻程序冷冻解冻、解冻后不脱除EG直接培养或移植。  相似文献   

11.
For the purpose of ascertaining parameters to embryo transfer on some domestic animals, mouse morulae were used as a model to investigate the effect of in-straw thawing on in vitro and in vivo-development of vitrified embryos. Embryos were vitrified in 0.25 ml straws preloaded with dilution solution (0.5 M Sucrose) and thawed in the straw by mixing the vitrification solution (Ethylene glycol + Ficoll 70 + Sucrose) and the dilution solution at 25 degrees C. The embryos were randomly divided into six groups and expelled from the straws after they had been suspended in the in-straw mixture for 3 min, 5 min, 8 min, 12 min, 16 min, and 20 min, respectively, and then they were collected under a microscope for in vitro culture or direct transfer. The in vitro developmental rates of the embryos were 92.3% to 98.4% and hatching rates were 64.1% to 75.6% for the groups of 3 min to 16 min, showing no significant differences with those of nonfrozen controls (100%, 76.2%; P > 0.05). While embryos were suspended in the straw for 20 min, the developmental rate (86.6%) and hatching rate (52.4%) were significant lower than those of the control (100%, 76.2%; P < 0.01). When the 168 frozen-thawed embryos (in-straw thawing for 5 min) and 168 fresh embryos were transferred, respectively, the proportion of live fetuses in the pregnant recipients between them (58.7% vs. 54.5%) showed no significant difference (P > 0.05). The data indicate that vitrification with EFS30 and suspension in the in-straw mixture for 3 min to 16 min, when thawing, did not affect the in vitro developmental rate and hatching rate. Moreover, the in vivo developmental rate between vitrified embryos and fresh embryos did not differ significantly. It can be concluded that this method is fit for nonsurgical embryo transfer in some domestic animals with a suggestion that the operation of embryo transfer should be accomplished within 16 min.  相似文献   

12.
Random bred female albino mice (6-8 weeks old) were used as a source of embryos. 8- to 16 cell embryos were dehydrated in glycerol-sucrose mixture in 0.25 ml straws at room temperature. Straws were cooled at the rate of 5 degrees C/min to -7 degrees C. Seeding was induced by touching the out side of the straw at -7 degrees C. Straws were further cooled at 0.5 degree C/min down to -35 degrees C and then plunged into liquid N2. Thawing of straws was done by direct transfer into water at 35 degrees C. Frozen-thawed embryos were cultured in a CO2 incubator maintained at 39 degrees C. Out 190 embryos (8-16 cell) initially frozen, 169 (88.94%) were recovered on thawing. 158 (93.5%) out of 169 were apparently normal and used for culture. 75 (47.46%) developed to morulae/early blastocysts and 72 (45.56%) to expanded blastocysts on 24 and 48 hr culture respectively. In conclusion, the incorporation of sucrose in the freezing medium at a concentration of 0.25 M has led us to propose a freezing, thawing and transfer method without dilution of glycerol. The technique being quite simple is worth trying in farm animals where importance of this technique in non-surgical transfer of frozen-thawed embryos will be a boon.  相似文献   

13.
Physical and chemical alterations caused by the freezing and thawing and their effects on survivals/developments in vitro were investigated. Of a total of 452 two-cell mouse embryos, the overall survival rate of the frozen-thawed embryos was 76.1% (344/452). The blastocyst formation of the frozen-thawed embryos was 32.6% (44/136) compared to 74.5% (117/157) in the fresh embryos (P<0.05). The total number of cells in a blastocyst also decreased from 96.0 +/- 19.0 (n=26) in the fresh embryos to 42.0 +/- 11 .34 (n=30) in the frozen-thawed embryos (P<0.05). Fluorescence recovery after photobleaching (FRAP) measurement revealed about 5-fold decrease in the cell membrane fluidity with a characteristic time constant (tau) of 1.46 +/- 0.13 sec (n=5) in the frozen-thawed embryos as opposed to 0.28 +/- 0.04 sec (n=5) in the fresh embryos (P<0.05). The relative amount of H(2)O(2) in an embryo as quantified by the fluorescence intensity of 2',7'-dichlorofluorescein (DCF) showed 62.8 +/- 23.5 (n=24) and 34.2 +/- 14.5 (n=20) in the frozen-thawed embryos and in the fresh embryos, respectively (P<0.05). The distribution of actin filaments in the frozen-thawed embryos revealed an uneven distribution, particularly discontinuities at the "actin band," which contrasted to an even distribution shown in the fresh embryos. Mitochondrial staining by Rhodamine 123 showed that there was no significant difference between the two treatments in the number and in the distribution of viable mitochondria, but a marked aggregation was seen in the arrested embryos. No Annexin V binding was detected in two-cell or four-cell embryos while the binding was positive in the arrested embryos. The mitochondrial membrane potential measured by a membrane potential-sensitive fluorescent probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazol- carbocyanine iodide (JC-1) revealed a marked depolarization in the frozen-thawed embryos. Finally, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin nick end-labeling (TUNEL) was employed to quantify the DNA fragmentation. In 75.0% cells of blastocysts (n=24) in the frozen-thawed embryos, the DNA fragmentation was detected as opposed to 37.0% in the fresh embryos (n=20) (P<0.05). Taken together, it is proposed that during the cryopreservation, two-cell mouse embryos are subjected to physical and chemical alterations, including destruction of the cell membrane integrity, redistribution of actin fibers, mitochondrial depolarizations, and increased reactive oxygen species (ROS) productions, which then may trigger the apoptotic cascade leading to a decrease in the survival rate and in the developmental rate of the embryos.  相似文献   

14.
Huang C  Dong Q  Tiersch TR 《Theriogenology》2004,62(6):971-989
The objectives of this study were to evaluate the effects of cryoprotectant, osmotic pressure, cooling rate, equilibration time, and sperm-to-extender ratio, as well as somatic relationships of body length, body weight, and testis weight to sperm density in the platyfish Xiphophorus couchianus. Sperm motility and survival duration after thawing were significantly different between cryopreservation with dimethyl sulfoxide (DMSO) and glycerol, with the highest motility at 10 min after thawing obtained with 14% glycerol. With subsequent use of 14% glycerol as cryoprotectant, the highest motility after thawing was observed with Hanks' balanced salt solution (HBSS) across a range of 240-300 mOsm/kg. Samples cooled from 5 to -80 degrees C at 25 degrees C/min yielded the highest post-thaw motility, although no significant difference was found for cooling rates across the range of 20-30 degrees C/min. In addition, the highest motility after thawing was found in samples equilibrated from 10 to 30 min with 14% glycerol and cooled at 25 degrees C/min. The post-thaw motility declined rapidly with use of 10% glycerol and cooling at 5 degrees C/min across the equilibration range of 10 min to 2h. Sperm motility with a dilution ratio of sperm to extender of 1:10 was not different at 10 min after thawing with those samples at greater dilutions, but declined significantly from Day 1 after thawing and showed lower survival duration when stored at 4 degrees C. However, the additional dilution of sperm solutions with HBSS (300 mOsm/kg) immediately after thawing significantly slowed the decline of motility and prolonged the duration of survival. Based on the above findings, the highest average sperm motility (78+/-3 %) at 10 min after thawing was obtained when sperm were suspended in HBSS at 300 mOsm/kg with 14% glycerol as cryoprotectant, diluted at a ratio of sperm to HBSS-glycerol of 1:20, equilibrated for 10 min, cooled at 25 degrees C/min from 5 to -80 degrees C before plunging into liquid nitrogen, and thawed at 40 degrees C in a water bath for 7 s. If diluted within 5 h after thawing, sperm frozen by the above protocol retained continuous motility for 15 days when stored at 4 degrees C.  相似文献   

15.
The effects of temperature and exposure time to vitrification solutions on In vitro survival of mouse blastocysts were investigated. Blastocysts were first exposed for 10 min to vitrification Solution 1 (VS1) containing 10% glycerol-20% 1,2 propanediol in phosphate buffered saline (PBS), then to vitrification Solution 2 (VS2) with 25 % glycerol-25% 1,2 propanediol for various periods either at room temperature or at 4°C. At room temperature survival dropped quickly, while at 4°C an increase in survival was observed.

It is concluded that the viability of mouse blastocyts after vitrification is dependent on the temperature and duration of equilibration in vitrification solutions.  相似文献   


16.
In vitro-produced bovine embryos (IVP) were either frozen in 10% glycerol in a phosphate-buffered saline solution (PBS) using conventional slow freezing or vitrified in 25% glycerol and 25% ethylene glycol in PBS. The results of viability and hatching rates were compared between frozen and vitrified embryos after thawing and dilution using one of three different protocols: (A) a three-step dilution procedure, (B) a one-step dilution procedure or (C) a procedure in which embryos were kept in situ inside the straw at 4 degrees C for 10 min during a one-step dilution procedure. No significant differences in embryo survival were found among protocols A, B and C for frozen embryos and between protocols A and B for vitrified embryos. Viability and hatching rates of vitrified embryos thawed and diluted by protocol C (73 and 62%) were significantly enhanced (P < 0.05) in comparison to those obtained with protocol A (55 and 41.6%) or protocol B (54.5 and 35.3%). These results indicate that for vitrified IVP bovine embryos, direct in-straw rehydration at 4 degrees C for 10 min improves embryo survival and it could be a practical procedure for use under field conditions where there is sometimes a longer interval between thawing and transfer.  相似文献   

17.
Experiments were conducted to develop a simple rapid-freezing protocol for mature mouse oocytes that would yield a high proportion of oocytes with developmental potential. The effects of concentration (3.5, 4.5 and 6.0 M dimethyl sulfoxide (DMSO) all with 0.5 M sucrose) and the duration of exposure (2.5 min vs 45 sec) of oocytes to the cryoprotectant and its extraction after thawing in 2, 3 or 4 steps of descending sucrose concentration were studied. The most effective of the rapid-freezing and thawing protocols (4.5 M DMSO; 45 sec exposure and 3-step thawing) was compared to slow freezing protocols using 1.5 M DMSO and 1.0 M 1,2 propanediol as cryoprotectants. The DMSO concentrations had an effect on survival, fertilization and embryo development using short (45 sec) but not long (2.5 min) exposure. The rate of morphological oocyte survival was significantly higher using 4.5 M DMSO than 3.5 or 6.0 M (92% vs 82 and 73%, respectively). The development of fertilized embryos to blastocysts was also significantly higher at 4.5 M than at 3.5 or 6.0 M (68% vs 42 and 53%, respectively). The extraction of cryoprotectant in 3 or 4 steps of descending sucrose concentration resulted in higher survival (P < 0.01) and fertilization than in 2 steps. The best survival, fertilization and development was achieved with the 3-step procedure. Optimal combinations of conditions were 4.5 M DMSO at 45 sec prefreeze exposure and 3-step extraction of the cryoprotectant. Oocytes frozen by conventional methods had a survival, fertilization and development to blastocyst rate significantly lower than those frozen under the optimal rapid conditions. Thus rapid freezing of mature mouse oocytes with 4.5 M DMSO + 0.5 M sucrose and short prefreeze exposure is effective and has the additional advantage of being less time-consuming than slow freezing methods.  相似文献   

18.
Three kinds of freezing methods were tested with embryos of DNI strain. The survival rate after thawing was 47.5%, 66.7% and 77.8% in the 2-step method, modified slow freezing method and modified 2-step method, respectively. Then, the modified 2-step method was applied to the embryos from 7 strains and a pair of interstrain crosses. PMSG treatment at the beginning of diestrus following HCG treatment after 48 hrs resulted in much yield of 8-16-cell embryos in all strains. The average number for each strain was as follows: DNI; 18.9, DDN; 13.0, BS; 20.4, C57BL/6; 12.9, DBA/2; 17.5, CRN; 19.8, PAN; 13.7 and DNI x C57BL/6-Ay; 21.7. Development of frozen-thawed embryos in culture varied among strains. Proportion of embryos that developed to the morula or blastocyst stage was as follows: DNI; 64.6%, DDN; 71.9%, BS; 53.6%, C57BL/6; 57.3%, DBA/2; 65.0%, CRN; 52.5%, PAN; 17.4% and DNI x C57BL/6-Ay; 44.1%. These results indicate that the ability of embryos to survive freezing and thawing is influenced by their genetic background. Live young were produced from DNI, DDN, BS and DNI x C57BL/6-Ay embryos after transfer to recipients. Comparative assessment of the developmental ability of frozen-thawed embryos after transfer among strains should be performed in further study.  相似文献   

19.
In the present study, 2 experiments were carried out. In experiment 1, mouse spermatozoa were frozen and stored in an ultra-low temperature freezer maintained at -79 degrees C, from 1 week to 8 months. In vitro fertilization rates of the frozen-thawed sperm after 1 week and 4 months of storage were high at 71 and 71%, respectively. These values did not differ significantly from the value (73%) of the control stored at -196 degrees C. In contrast, the 8-month storage rate was significantly lower at 51%. In experiment 2, frozen spermatozoa were transported in a Styrofoam box packed in dry ice from Hokkaido to Tokyo. In vitro fertilization rate of frozen-thawed sperm after transport at -79 degrees C was high at 88%, which was not significantly different from that (84%) of the transported control at -190 degrees C. After transferring two-cell embryos derived from frozen spermatozoa to recipients, 37-62% of the embryos developed into offspring in both experiments. These results indicate that mouse spermatozoa can survive cryopreservation in an ultra-low temperature freezer (-79 degrees C) for up to 4 months and transport at -79 degrees C.  相似文献   

20.
This study (1) analyzed fetal development of mouse embryos after oocyte cryopreservation in CJ2, a choline-based medium, (2) examined the effect of culture duration in vitro on subsequent fetal development, and (3) compared survival and fetal development of zygotes frozen in embryo transfer freeze medium (ETFM; sodium-based medium) or CJ2. Unfertilized oocytes and zygotes were cryopreserved using a slow-cooling protocol. After thawing, oocytes were inseminated after drilling a hole in their zona, cultured in vitro either to the two-cell or blastocyst stage, and transferred to the oviducts or uterine horns of recipient mice. In parallel experiments, frozen-thawed zygotes were similarly cultured and transferred. Implantation rates for transferred embryos were high (range 66-88%), regardless of whether they had been frozen as oocytes or zygotes and whether they had been transferred to the oviduct or uterus. However, fetal development was significantly higher when two-cell embryos were transferred. With blastocyst transfer, control embryos implanted and produced a greater proportion of fetuses than did oocytes frozen in CJ2, whereas transfer at the two-cell stage resulted in similar proportions of implantation sites and fetuses. Blastocyst transfer of zygotes cryopreserved in ETFM or CJ2 produced similar fetal development rates (23.6% vs 20.0%), but when frozen-thawed zygotes were transferred at the two-cell stage the fetal development rates were higher in the ETFM group (53.3%) than in the CJ2 group (32.0%). A high proportion (46.7%) of oocytes frozen in CJ2 in a nonprogrammable freezer and plunged at -20 degrees C developed into live offspring. This study shows that in the mouse (1) oocytes frozen in CJ2 can develop into viable fetuses, (2) prolonging culture in vitro has a detrimental effect on embryo transfer outcome, and (3) CJ2 offers no advantage for zygote cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号