首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Structure and organization of mouse U3B RNA functional genes   总被引:8,自引:0,他引:8  
  相似文献   

3.
Genes for human U4 small nuclear RNA   总被引:10,自引:0,他引:10  
  相似文献   

4.
5.
6.
U4 RNA is one of several small nuclear RNAs involved in the splicing of mRNA precursors. The domestic chicken has two genes per haploid genome that are capable of encoding U4 RNA. The U4X RNA gene (which encodes a sequence variant of U4 RNA that was unknown prior to the cloning of the gene) and the U4B RNA gene were both expressed in vivo in each of seven adult and three embryonic chicken tissues examined. However, the ratio of U4B RNA to U4X RNA can vary more than sevenfold in both a tissue- and stage-specific manner.  相似文献   

7.
8.
9.
There are about 50 copies of U1 RNA genes/pseudogenes in the rat genome. To date, we have isolated so far 25 phage clones carrying a U1 RNA gene/pseudogene from two rat genomic libraries. The 12 clones were selected by hybridization with the U1 RNA coding region under a stringent condition, and were mapped and sequenced. Here, we report three types of U1 RNA genes with different flanking sequences, all of which were shown to be induced to express in vivo by transfection with their polylinker-inserted maxi U1 RNA genes into cultured rat cells. Although these three classes of U1 RNA genes have few homologous flanking sequences, they provide both upstream and downstream of the genes two conserved blocks, which may possibly play an important role in U1 RNA expression.  相似文献   

10.
We have demonstrated recently that the genes encoding the U3 small nuclear RNA (snRNA) in dicot plants are transcribed by RNA polymerase III (pol III), and not RNA polymerase II (pol II) as in all other organisms studied to date. The U3 gene was the first example of a gene transcribed by different polymerases in different organisms. Based on phylogenetic arguments we proposed that a polymerase specificity change of the U3 snRNA gene promoter occurred during plant evolution. To map such an event we are examining the U3 gene polymerase specificity in other plant species. We report here the characterization of a U3 gene from wheat, a monocot plant. This gene contains the conserved promoter elements, USE and TATA, in a pol III-specific spacing seen also in a wheat U6 snRNA gene characterized in this report. Both the U3 and the U6 genes possess typical pol III termination signals but lack the cis element, responsible for 3-end formation, found in all plant pol II-specific snRNA genes. In addition, expression of the U3 gene in transfected maize protoplasts is less sensitive to -amanitin than a pol II-transcribed U2 gene. Based on these data we conclude that the wheat U3 gene is transcribed by pol III. This observation suggests that the postulated RNA polymerase specificity switch of the U3 gene took place prior to the divergence of angiosperm plants into monocots and dicots.  相似文献   

11.
U3 small nucleolar RNA (snoRNA) is a member of the Box C/D family of snoRNAs which functions in ribosomal RNA processing. U3-55k is a protein that has been found to interact with U3 but not other members of the Box C/D snoRNA family. We have found that interaction of the U3-55k protein with U3 RNA in vivo is mediated by the conserved Box B/C motif which is unique to U3 snoRNA. Mutation of Box B and Box C, but not of other conserved sequence elements, disrupted interaction of U3-55k with U3 RNA. Furthermore, a fragment of U3 containing only these two conserved elements was bound by U3-55k in vivo. RNA binding assays performed in vitro indicate that Box C may be the primary determinant of the interaction. We have cloned the cDNA encoding the Xenopus laevis U3-55k protein and find strong homology to the human sequence, including six WD repeats. Deletion of WD repeats or sequences near the C-terminus of U3-55k resulted in loss of association with U3 RNA and also loss of localization of U3-55k to the nucleolus, suggesting that protein–protein interactions contribute to the localization and RNA binding of U3-55k in vivo.  相似文献   

12.
13.
Structure of the sea urchin U1 RNA repeat.   总被引:16,自引:6,他引:10       下载免费PDF全文
The genes coding for U1 RNA in the sea urchin L. variegatus are present in a 1400 base pair tandem repeat. One member of the repeat has been cloned and its sequence determined. The repeat unit contains a single copy of the gene for L. variegatus U1 RNA. This gene encodes an RNA which is 75% homologous to mammalian U1 RNA. The L. variegatus U1 RNA could assume a secondary structure similar to that proposed for other U1 RNAs. In addition the L. variegatus U1 RNA is precipitated by anti-SM and anti-RNP antisera. Analysis of the L. variegatus genomic DNA using the cloned U1 gene as a probe reveals a major and a minor type of repeat unit. The two repeated units are the same length but differ in a number of restriction enzyme sites clustered 200-500 bases down-stream from the gene. The monomer we have cloned and sequenced is a representative of the minor repeat. A sequence (GATAA) which is -41 to -37 bases 5' to the gene has homology to the putative RNA polymerase II promoter. Fifteen bases 3' of the gene is a sequence (CAAAGAAAGAAAA) which is very similar to the sequence found 3' of the sea urchin histone genes. The two Hha I, Hpa II and Ava I sites in the repeat are all unmethylated in sperm DNA.  相似文献   

14.
15.
A U3 RNA variant has been identified in mouse, the abundance of which relative to the previously characterized major form (U3B) appears to vary to a large extent depending upon the cell origin. Its partial sequence analysis shows that it is clearly related to the U3A form previously described in rat. Sequence comparisons suggest that the separation of the two forms of U3 genes now found in rat and mouse represent a relatively ancient event in rodent evolution. While mouse U3B RNA is encoded by four clustered genes, the U3A variant is encoded by a unique gene. Both mouse U3 RNAs differ substantially in primary structure (more than 10% divergence). Although rodent U3 RNAs exhibit a largely similar secondary structure, a specific difference between the A and B form can nevertheless be observed.  相似文献   

16.
The yeast homologue of U3 snRNA.   总被引:50,自引:10,他引:40       下载免费PDF全文
snR17, one of the most abundant capped small nuclear RNAs of Saccharomyces cerevisiae, is equivalent to U3 snRNA of other eukaryotes. It is 328 nucleotides in length, 1.5 times as long as other U3 RNAs, but shares significant homology both in nucleotide sequence and in predicted secondary structure. Human scleroderma antiserum specific to nucleolar U3 RNP can enrich snR17 from sonicated yeast nuclear extracts. Unlike other yeast snRNAs which are encoded by single copy genes, snR17 is encoded by two genetically unlinked genes: SNR17A and SNR17B. The RNA snR17A is more abundant than snR17B. Deleting one or other of the genes has no obvious phenotypic effect, except that the steady-state level of snR17B is increased in snr17a- strains. Haploid strains with both genes deleted are inviable, therefore yeast U3 is essential.  相似文献   

17.
Preparations of chicken, rat and human nuclear 5S RNA contain two sets of molecules. The set with the lowest electrophoretic mobility (5Sa) contains RNAs identical or closely related to ribosomal 5S RNA from the corresponding animal species. In HeLa cells and rat brain, we only detected an RNA identical to the ribosomal 5S RNA. In hen brain and liver, we found other species differing by a limited number of substitutions. The results suggest that mutated 5S genes may be expressed differently according to the cell type. The set with the highest mobility corresponds to U5 RNA. In both rat brain and HeLa cells, U5 RNA was found to be composed of 4 and 5 different molecules respectively (U5A, U5B1-4) differing by a small number of substitutions or insertions. In hen brain, no U5B was detected but U5A' differing from U5A by the absence of the 3'-terminal adenosine. All the U5 RNAs contain the same set of modified nucleotides. They also have the same secondary structure which consists of two hairpins joined together by a 17 nucleotide long single-stranded region. The 3' half of the molecule has a compact conformation. Together, the results suggest that U5 RNAs are transcribed from a multigene family and that mutated genes may be expressed as far as secondary structure is conserved. The conformation of U5 RNA is likely to be related to its function and it is of interest to mention that several similarities of structure are found between U5 and U1A RNA.  相似文献   

18.
Lambda phage clones containing multiple copies of the 1.1 kb tandemly repeated unit of the sea urchin (S. purpuratus) U1 RNA genes were isolated from a gene library. The 1.1 kb repeat unit encodes a single copy of the predominant U1 RNA expressed in oocytes and embryos prior to the blastula stage. The tandem repeat unit is about 80 kb in size and is probably present one time per haploid genome as judged by pulsed-field electrophoresis of sperm DNA digested with restriction enzymes which do not cut in the repeat unit. Two of the phage contained DNA flanking the repeat unit as well as several repeat units. The tandem repeat unit ends just 3' to the U1 coding region. There is only limited homology in the 5' flanking region with U1 snRNA genes from the sea urchin L. variegatus.  相似文献   

19.
20.
Y Ohshima  N Okada  T Tani  Y Itoh    M Itoh 《Nucleic acids research》1981,9(19):5145-5158
We have isolated four clones which hybridize with U6 (4.8S) nuclear RNA, a mammalian small nuclear RNA(nRNA), from DNA of BALB/C mouse liver. Their restriction maps are totally different from each other, indicating that they derived from different loci in the mouse genome. The nucleotide sequences around the hybridizing region in the three clones have been determined. One clone gives a gene that is co-linear with the U6 RNA. There is a sequence TATAAAT beginning 31 nucleotides upstream of the gene, which may suggest that the U6 RNA is transcribed by RNA polymerase II. The other two clones contain a pseudogene for the U6 RNA which has 7 or 9 nucleotide changes from the RNA. The pseudogenes are surrounded by radically different sequences from those surrounding the gene, and they are closely linked to a pseudogene for another snRNA, 4.5S-I RNA, or a part of highly repetitive an interspersed sequence B1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号