首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Isolation and characterization of a human U3 small nucleolar RNA gene   总被引:11,自引:0,他引:11  
U3 RNA is an abundant, capped, small nucleolar RNA, implicated in the processing of preribosomal RNA. In this study, a DNA clone coding for U3 RNA (clone U3-1) was isolated from a human genomic library and characterized. The DNA sequence was identical to that of human U3 RNA isolated from HeLa cells. The flanking regions showed homology to the enhancer, promoter, and 3'-processing signal found in U1 and U2 snRNA genes. Further, the recently identified "U3 box" (GATTGGCTGCN10TATGTTAATTATGG) of rat U3 genes (Stroke and Weiner, (1985) J. Mol. Biol. 184, 183-193), was also found in the human U3 gene. This gene was transcribed in Xenopus oocytes; it is the first cloned true human U3 gene.  相似文献   

2.
3.
4.
Structure of the sea urchin U1 RNA repeat.   总被引:16,自引:6,他引:10       下载免费PDF全文
The genes coding for U1 RNA in the sea urchin L. variegatus are present in a 1400 base pair tandem repeat. One member of the repeat has been cloned and its sequence determined. The repeat unit contains a single copy of the gene for L. variegatus U1 RNA. This gene encodes an RNA which is 75% homologous to mammalian U1 RNA. The L. variegatus U1 RNA could assume a secondary structure similar to that proposed for other U1 RNAs. In addition the L. variegatus U1 RNA is precipitated by anti-SM and anti-RNP antisera. Analysis of the L. variegatus genomic DNA using the cloned U1 gene as a probe reveals a major and a minor type of repeat unit. The two repeated units are the same length but differ in a number of restriction enzyme sites clustered 200-500 bases down-stream from the gene. The monomer we have cloned and sequenced is a representative of the minor repeat. A sequence (GATAA) which is -41 to -37 bases 5' to the gene has homology to the putative RNA polymerase II promoter. Fifteen bases 3' of the gene is a sequence (CAAAGAAAGAAAA) which is very similar to the sequence found 3' of the sea urchin histone genes. The two Hha I, Hpa II and Ava I sites in the repeat are all unmethylated in sperm DNA.  相似文献   

5.
6.
Human DNA sequences complementary to the small nuclear RNA U2.   总被引:11,自引:3,他引:8       下载免费PDF全文
Clones containing sequences complementary to the small nuclear RNA U2 were isolated from a human DNA library (1). Three clones, designated U2/4, U2/6 and U2/7 were purified and characterized by restriction enzyme cleavage, hybridization and heteroduplex analysis. Hybridization showed that the three clones each contained one single region which is complementary to U2 RNA. Restriction enzyme cleavage revealed furthermore that the inserted fragments in the three recombinants are different. Heteroduplex analysis identified a 240-380 bp long duplex region in each heteroduplex which includes sequences complementary to U2 RNA. Heteroduplexes between clones U2/4 and U2/7 as well as between U2/4 and U2/6 revealed two additional approximately 200 bp long homologies. The remainder of the inserts were found to lack measurable sequence homology. Two fragments from clone U2/4 were subcloned in the pBR322 vector and the subclones were used to determine the nucleotide sequence of a region in clone U2/4 which is complementary to U2 RNA. A comparison between the established sequence and the sequence for rat U2 RNA (2) reveals several discrepancies.  相似文献   

7.
8.
Structure and organization of mouse U3B RNA functional genes   总被引:8,自引:0,他引:8  
  相似文献   

9.
We describe here the organization of DNA sequences complementary to Drosophila melanogaster U2 small nuclear (sn) RNA. From a genomic library we isolated two recombinants containing two genes each. Genomic reconstruction experiments and Southern analysis revealed that D. melanogaster possesses only four to five U2 snRNA genes or very closely related sequences. The nucleotide sequence of one of the clones analysed shows 77% homology with rat U2 snRNA. A stretch of 12 nucleotides that has been implicated in heterogeneous nuclear RNA splicing is conserved between rat and Drosophila. The genomic organization of these genes is very similar in different melanogaster strains but diverges highly in different Drosophila species.  相似文献   

10.
11.
12.
13.
Analysis of cloned human genomic loci homologous to the small nuclear RNA U1 established that such sequences are abundant and dispersed in the human genome and that only a fraction represent bona fide genes. The majority of genomic loci bear defective gene copies, or pseudogenes, which contain scattered base mismatches and in some cases lack the sequence corresponding to the 3' end of U1 RNA. Although all of the U1 genes examined to date are flanked by essentially identical sequences and therefore appear to comprise a single multigene family, we present evidence for the existence of at least three structurally distinct classes of U1 pseudogenes. Class I pseudogenes had considerable flanking sequence homology with the U1 gene family and were probably derived from it by a DNA-mediated event such as gene duplication. In contrast, the U1 sequence in class II and III U1 pseudogenes was flanked by single-copy genomic sequences completely unrelated to those flanking the U1 gene family; in addition, short direct repeats flanked the class III but not the class II pseudogenes. We therefore propose that both class II and III U1 pseudogenes were generated by an RNA-mediated mechanism involving the insertion of U1 sequence information into a new chromosomal locus. We also noted that two other types of repetitive DNA sequences in eucaryotes, the Alu family in vertebrates and the ribosomal DNA insertions in Drosophila, bore a striking structural resemblance to the classes of U1 pseudogenes described here and may have been created by an RNA-mediated insertion event.  相似文献   

14.
Nuclei, isolated from a number of plant species by either of two independent, newly developed methods, regularly contained a common set of low-molecular-mass RNAs. Partial characterization of these RNAs, based on cell fractionation, polyacrylamide gel electrophoretic and chemical sequencing techniques, as well as comparison with literature data, revealed that, in addition to tRNA, 5S RNA and 5.8S RNA, plant nuclei contain two families of low-molecular-mass RNAs, that are counterparts of vertebrate U1 and U5 RNAs respectively, and three individual low-molecular-mass RNA species. One of these may be related to vertebrate U6 RNA. The two others are true eukaryotic U2 and U3 RNAs, respectively, on the basis of the following lines of evidence obtained from analyses of broad bean nuclear RNAs. The 3'-end portion (121 nucleotides sequenced) of broad bean U2 RNA shows a nearly perfect sequence homology with that of authentic pea U2 RNA. Broad bean U3 RNA is localized in the nucleolus and its 3'-end portion (164 nucleotides sequenced) (a) shows sequence homology with that of both rat U3 RNA (48%) and Dictyostelium D2 RNA (39%), (b) has a secondary structure which fits perfectly that proposed for both rat U3 RNA and Dictyostelium D2 RNA, and (c) contains the specific sequence which, in a model based on the primary structure of rat U3 RNA, is supposed to be involved in the processing of eukaryotic 32S pre-ribosomal RNA. This is the first report on the occurrence in plants of nucleolar U3 RNA.  相似文献   

15.
Four loci for human U4 RNA have been characterized by DNA sequence analysis. The results show that all four loci represent pseudogenes, which are flanked by direct repeats. Three of the pseudogenes, designated U4/5, U4/6, and U4/8, have very similar structures; they are all truncated and contain the first 67 to 68 nucleotides of the U4 RNA sequence. Their properties suggest that they were created by integration of truncated cDNA copies of the U4 RNA into new chromosomal sites. An interesting observation was that their flanking regions exhibit sequence homology. A purine-rich 5'-flanking sequence 12 to 13 nucleotides long is almost perfectly conserved in all three loci. Boxes of homology were also found on the 3' side when the U4/6 and U4/8 loci were compared. The U4/4 locus has a slightly different structure; the pseudogene matches the first 79 nucleotides of U4 RNA, but contains a greater number of mutations than the other pseudogenes. Taken together, the results suggest that a frequently occurring type of pseudogene for human U4 was created by a RNA-mediated mechanism and that the integration sites have features in common.  相似文献   

16.
17.
U3 small nucleolar RNA (snoRNA) is a member of the Box C/D family of snoRNAs which functions in ribosomal RNA processing. U3-55k is a protein that has been found to interact with U3 but not other members of the Box C/D snoRNA family. We have found that interaction of the U3-55k protein with U3 RNA in vivo is mediated by the conserved Box B/C motif which is unique to U3 snoRNA. Mutation of Box B and Box C, but not of other conserved sequence elements, disrupted interaction of U3-55k with U3 RNA. Furthermore, a fragment of U3 containing only these two conserved elements was bound by U3-55k in vivo. RNA binding assays performed in vitro indicate that Box C may be the primary determinant of the interaction. We have cloned the cDNA encoding the Xenopus laevis U3-55k protein and find strong homology to the human sequence, including six WD repeats. Deletion of WD repeats or sequences near the C-terminus of U3-55k resulted in loss of association with U3 RNA and also loss of localization of U3-55k to the nucleolus, suggesting that protein–protein interactions contribute to the localization and RNA binding of U3-55k in vivo.  相似文献   

18.
19.
Genes and pseudogenes for rat U3A and U3B small nuclear RNA   总被引:11,自引:0,他引:11  
  相似文献   

20.
Novel structure of a human U6 snRNA pseudogene   总被引:2,自引:0,他引:2  
H Theissen  J Rinke  C N Traver  R Lührmann  B Appel 《Gene》1985,36(1-2):195-199
A genomic DNA library containing human placental DNA cloned into phage lambda Charon 4A was screened for snRNA U6 genes. In vitro 32P-labeled U6 snRNA isolated from HeLa cells was used as a hybridization probe. A positive clone containing a 4.6-kb EcoRI fragment of human chromosomal DNA was recloned into the EcoRI site of pBR325 and mapped by restriction endonuclease digestion. Restriction fragments containing U6 RNA sequences were identified by hybridization with isolated U6[32P]RNA. The sequence analysis revealed a novel structure of a U6 RNA pseudogene, bearing two 17-nucleotide(nt)-long direct repeats of genuine U6 RNA sequences arranged in a head-to-tail fashion within the 5' part of the molecule. Hypothetical models as to how this type of snRNA U6 pseudogene might have been generated during evolution of the human genome are presented. When compared to mammalian U6 RNA sequences the pseudogene accounts for a 77% overall sequence homology and contains the authentic 5'- and 3'-ends of the U6 RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号