首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through structure-based virtual screening, some dozen of benzene sulfonamides with novel scaffolds are identified as potent inhibitors against carbonic anhydrase (CA) IX with IC50 values ranging from 2.86 to 588.34 nM. Among them, compounds 1 and 9 show high selectivity against tumor-target CA IX over CA II (the selectivity ratios are 21.3 and 136.6, respectively). The possible binding poses of hit compounds are also explored and the selectivity is elucidated by molecular docking simulations. The hit compounds discovered in this work would provide novel scaffolds for further hit-to-lead optimization.  相似文献   

2.
Abstract

Tumour hypoxia results in dramatic changes in the gene expression, proliferation and survival of tumour cells. The tumour cells shift towards anaerobic glycolysis which results in change of pH in their microenvironment. In response to this stress, over expression of carbonic anhydrase IX (CA IX) genes is observed in many solid tumours. So, selective inhibition of CA IX can be a promising target for anti-cancer drugs. In this work in silico tools like atom-based 3D-QSAR modelling, pharmacophore-based virtual screening and molecular docking were used to identify potential CA IX inhibitors. Based on the training set used in the QSAR model, twenty pharmacophore models were generated. Out of these, HHHR_1, AHHR_1, DHHHR_1, AHHHR_1 model was used to screen a database of 1,50,000 compounds retrieved from ZINC 15 database. R2 and Q2 was 0.9864 and 0.8799, respectively, for the developed QSAR model. 163 compounds showed a phase screen score above 2.4 in which ZINC02260669 was the highest ranked (screen score, 2.852058) compound in all the four models. Built QSAR model was used to predict the activity of all these 163 compounds and ZINC72370966 showed the highest predicted activity with pKi value of 7.649. These compounds were docked against CA IX (human) protein (PDB ID 5FL6) and molecular docking results showed favourable binding interactions for the best ten identified hits. This work gives design insights and some potential scaffolds which can be developed as CA IX inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
Carbonic anhydrase (CA) IX expression is increased upon hypoxia and has been proposed as a therapeutic target since it has been associated with poor prognosis, tumor progression and pH regulation. We report the synthesis and the pharmacological evaluation of a new class of human carbonic anhydrase (hCA) inhibitors, 4-(5-aryl-2-hydroxymethyl-pyrazol-1-yl)-benzenesulfonamides. A molecular modeling study was conducted in order to simulate the binding mode of this new family of enzyme inhibitors within the active site of hCA IX. Pharmacological studies revealed high hCA IX inhibitory potency in the parameters nanomolar range. This study showed that the position of sulfonamide group in meta of the 1-phenylpyrazole increase a selectivity hCA IX versus hCA II of our compounds. An in vitro antiproliferative screening has been performed on the breast cancer MDA-MB-231 cell using doxorubicin as cytotoxic agent and in presence of selected CA IX inhibitor. The results shown that the cytotoxic efficiency of doxorubicin in an hypoxic environment, expressed in IC50 value, is restored at 20% level with 1 μM CA IX inhibitor.  相似文献   

4.
Abstract

Human carbonic anhydrase IX (CA IX) is overexpressed in the most aggressive and invasive tumors. Therefore, CA IX has become the promising antitumor drug target. Three inhibitors have been shown to selectively and with picomolar affinity inhibit human recombinant CA IX. Their inhibitory potencies were determined for the CA IX, CA II, CA IV and CA XII in Xenopus oocytes and MDA-MB-231 cancer cells. The inhibition IC50 value of microelectrode-monitored intracellular and extracellular acidification reached 15?nM for CA IX, but with no effect on CA II expressed in Xenopus oocytes. Results were confirmed by mass spectrometric gas analysis of lysed oocytes, when an inhibitory effect on CA IX catalytic activity was found after the injection of 1?nM VD11-4-2. Moreover, VD11-4-2 inhibited CA activity in MDA-MB-231 cancer cells at nanomolar concentrations. This combination of high selectivity and potency renders VD11-4-2, an auspicious therapeutic drug for target-specific tumor therapy.  相似文献   

5.
Carbonic anhydrase (CA) IX is a hypoxia inducible enzyme that is highly expressed in solid tumours. Therefore, it has been considered as an anticancer target using specific chemical inhibitors. The nitroimidazoles DTP338 and DTP348 have been shown to inhibit CA IX in nanomolar range in vitro and reduce extracellular acidification in hypoxia, and impair tumour growth. We screened these compounds for toxicity using zebrafish embryos and measured their in vivo effects on human CA IX in Xenopus oocytes. In the toxicity screening, the LD50 for both compounds was 3.5?mM. Neither compound showed apparent toxicity below 300?µM concentration. Above this concentration, both compounds altered the movement of zebrafish larvae. The IC50 was 0.14?±?0.02?µM for DTP338 and 19.26?±?1.97?µM for DTP348, suggesting that these compounds efficiently inhibit CA IX in vivo. Our results suggest that these compounds can be developed as drugs for cancer therapy.  相似文献   

6.
New coumaryl-carboxamide derivatives with the thiourea moiety as a linker between the alkyl chains and/or the heterocycle nucleus were synthesized and their inhibitory activity against the human carbonic anhydrase (hCA) isoforms hCA I, II, VII and IX were evaluated. While the hCA I, II and VII isoforms were not inhibited by the investigated compounds, the tumour-associated isoform hCA IX was inhibited in the high nanomolar range. 2-Oxo-N-((2-(pyrrolidin-1-yl)ethyl)carbamothioyl)-2H-chromene-3-carboxamide (e11) exhibited a selective inhibitory action against hCA IX with the Ki of 107.9?nM. In order to better understand the inhibitory profiles of studied molecules, multiscale molecular modeling approaches were used. Different molecular docking algorithms were used to investigate binding poses and predicted binding energies of studied compounds at the active sites of the CA I, II, VII and IX isoforms.  相似文献   

7.
BackgroundHuman carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding.MethodsThe observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry.ResultsThe pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was − 24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM.ConclusionsThe intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship.General significanceIt is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations.  相似文献   

8.
A new series of s-triazine derivatives incorporating sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide and piperazine or aminoalcohol structural motifs is reported. Molecular docking was exploited to select compounds from virtual combinatorial library for synthesis and subsequent biological evaluation. The compounds were prepared by using step by step nucleophilic substitution of chlorine atoms from cyanuric chloride (2,4,6-trichloro-1,3,5-triazine). The compounds were tested as inhibitors of physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms. Specifically, against the cytosolic hCA I, II and tumor-associated hCA IX. These compounds show appreciable inhibition. hCA I was inhibited with KIs in the range of 8.5–2679.1 nM, hCA II with KIs in the range of 4.8–380.5 nM and hCA IX with KIs in the range of 0.4–307.7 nM. As other similar derivatives, some of the compounds showed good or excellent selectivity ratios for inhibiting hCA IX over hCA II, of 3.5–18.5. 4-[({4-Chloro-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)methyl] benzene sulfonamide demonstrated subnanomolar affinity for hCA IX (0.4 nM) and selectivity (18.50) over the cytosolic isoforms. This series of compounds may be of interest for the development of new, unconventional anticancer drugs targeting hypoxia-induced CA isoforms such as CA IX.  相似文献   

9.
Novel series of 2-morpholino-4-phenylthiazol-5-yl acrylamide derivatives (8as) have been synthesized and explored as a non-sulfonamide class of carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The newly synthesized molecules were evaluated for their CA inhibitory potency against four isoforms: the cytosolic isozyme hCA I, II as well as trans-membrane tumor associated isoform hCA IX and hCA XII taking acetazolamide (AAZ) as standard drug. The results revealed that most of the compounds showed good activity against hCA II, IX, and XII whereas none of them were active against hCA I (Ki >100 μM). It is observed that the physiologically most important cytosolic isoform hCA II was inhibited by these molecules in the range of Ki 9.3–77.7 μM. It is also found the both the transmembrane isoforms hCA IX and XII were also inhibited with Kis ranging between 54.7–96.7 μM and 4.6–8.8 μM, respectively. The binding modes of the active compounds within the catalytic pockets of hCA II, IX and XII were evaluated by docking studies. This new non-sulfonamide class of selective inhibitors of hCA II, IX and XII over the hCA I isoform may be used for further understanding the physiological roles of some of these isoforms in various pathologies.  相似文献   

10.
A series of twenty novel ureido benzenesulfonamides incorporating 1,3,5-triazine moieties substituted on one side with aromatic amines and on the other side with dimethylamine, morpholine and piperidine is reported. The compounds were synthesized from the 4-(3-(4,6-dichloro-1,3,5-triazin-2-yl)ureido)benzensulfonamide (1) by using stepwise nucleophilic substitution of the chlorine atoms of cyanuric chloride. The intermediates 2(a-e) and final compounds 3(a-o) were tested for their efficiency as carbonic anhydrase (CA) inhibitors against four selected physiologically relevant human carbonic anhydrase (CA, EC 4.2.1.1) isoforms, namely, the cytosolic ones hCA I and II, and the transmembrane, tumor associated ones hCA IX, and XII. The compounds 2a, 2e and 3m showed the highest activity for hCA IX with Kis in the range of 11.8–14.6?nM. Most of the compounds showed high hCA IX selectivity over the abundant off-target isoforms hCA I and II. Since hCA IX is a validated drug target for anticancer/antimetastatic agents, these isoform-selective and potent inhibitors may be considered of interest for further medicinal/pharmacologic studies.  相似文献   

11.
Poly(ADP-ribose) polymerase-1 (PARP-1) enzyme has critical roles in DNA replication repair and recombination. Thus, PARP-1 inhibitors play an important role in the cancer therapy. In the current study, we have performed combination of in silico and in vitro studies in order to discover novel inhibitors against PARP-1 target. Structure-based virtual screening was carried out for an available small molecules database. A total of 257,951 ligands from Otava database were screened at the binding pocket of PARP-1 using high-throughput virtual screening techniques. Filtered structures based on predicted binding energy results were then used in more sophisticated molecular docking simulations (i.e. Glide/standard precision, Glide/XP, induced fit docking – IFD, and quantum mechanics polarized ligand docking – QPLD). Potential high binding affinity compounds that are predicted by molecular simulations were then tested by in vitro methods. Computationally proposed compounds as PARP-1 inhibitors (Otava Compound Codes: 7111620047 and 7119980926) were confirmed by in vitro studies. In vitro results showed that compounds 7111620047 and 7119980926 have IC50 values of 0.56 and 63 μM against PARP-1 target, respectively. The molecular mechanism analysis, free energy perturbation calculations using long multiple molecular dynamics simulations for the discovered compounds which showed high binding affinity against PARP-1 enzyme, as well as structure-based pharmacophore development (E-pharmacophore) studies were also studied.  相似文献   

12.
A series of hydroxylic compounds (1–10, NK-154 and NK-168) have been assayed for the inhibition of three physiologically relevant carbonic anhydrase isozymes, the cytosolic isozymes I, II and tumor-associated isozyme IX. The investigated compounds showed inhibition constants in the range of 0.068–4003, 0.012–9.9 and 0.025–115?μm at the hCA I, hCA II and hCA IX enzymes, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico studies were also applied. Molecular docking scores of the studied compounds are calculated using scoring algorithms, namely Glide/induced fit docking. The inhibitory potencies of the novel compounds were analyzed at the human isoforms hCA I, hCA II and hCA IX as targets and the KI values were calculated.  相似文献   

13.
A small collection of 26 structurally novel thiazolidinone-containing compounds, without the well-known sulphonamide zinc-binding group, were synthesised and tested in enzyme inhibition assays against the tumour-associated hCA IX enzyme. Inhibition constants in the lower micromolar region (KI KI values are relatively weak, the fact that they do not contain a sulphonamide moiety suggests that these compounds do not interact with the active site zinc ion. Therefore, docking studies and molecular dynamics simulations have been performed to suggest binding poses for these structurally novel inhibitors.  相似文献   

14.
A series of novel 7-hydroxycoumarin-3-carboxamides was synthesized by the reaction of 7-hydroxy-2-oxo-2H-chromene-3-carboxylic acid with various substituted aromatic amines. The newly synthesized compounds were evaluated for their inhibitory activity against the four physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms CA I, CA II, CA IX and CA XII. The CA inhibition results show that the newly synthesized 7-hydroxycoumarin-3-carboxamides (4a-n) exhibited selective inhibition of the tumor associated isoforms, CA IX and CA XII over CA I and II isoforms. The inhibition constants ranged from sub micromolar to low micromolar. Amongst all the compounds tested, compound 4m was the most effective inhibitor exhibiting sub micromolar potency against both hCA IX and hCA XII, with a Ki of 0.2 µM. Therefore, it can be anticipated that compound 4m can serve as a lead for development of anticancer therapy by exhibiting a novel mechanism of action. The binding modes of the most potent compounds within hCA IX and XII catalytic clefts were investigated by docking studies.  相似文献   

15.
New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with KIs in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents.  相似文献   

16.
A series of 2-mercapto-substituted-benzenesulfonamides has been prepared by a unique two-step procedure starting from the corresponding 2-chloro-substituted benzenesulfonamides. Compounds bearing an unsubstituted mercapto group and the corresponding S-benzoyl derivatives were investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), i.e., the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor associated isozymes CA IX and XII. These derivatives were medium potency hCA I inhibitors (KIs in the range of 1.5–5.7 μM), two derivatives were strong hCA II inhibitors (KIs in the range of 15–16 nM), whereas the others showed weak activity. These compounds inhibited hCA IX with inhibition constants in the range 160–1950 nM and hCA XII with inhibition constants in the range 1.2–413 nM. Some of these derivatives showed a certain degree of selectivity for inhibition of the tumor-associated over the cytosolic isoforms, being thus interesting leads for the development of potentially novel applications in the management of hypoxic tumors which overexpress CA IX and XII.  相似文献   

17.
Reaction of 4,4-biphenyl-disulfonyl chloride with aromatic/heterocyclic sulfonamides also incorporating a free amino group, such as 4-aminobenzenesulfonamide, 4-aminoethyl-benzenesulfonamide, 6-chloro-4-aminobenzene-1,3-disulfonamide or 5-amino-1,3,4-thiadiazole-2-sulfonamide afforded bis-sulfonamides which have been tested as inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4..2.1.1). The compounds were rather modest inhibitors of isozymes CA I and XII, but were more efficient as inhibitors of the cytosolic CA II and transmembrane, tumor-associated CA IX (inhibition constants in the range of 21–129 nM gainst hCA II, and 23–79 nM against hCA IX, respectively). The new bis-sulfonamides also showed inhibition of growth of several tumor cell lines (ex vivo), with GI50 values in the range of 0.74–10.0 μg/mL against the human colon cancer cell line HCT116, the human lung cancer cell line H460 and the human breast cancer cell line MCF-7.  相似文献   

18.
A series of 4 and 5 nitro-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 18) was synthesized by reaction of benzenesulfonamide derivatives with 4 and 3-nitrophthalic anhydrides. These new sulfonamides were investigated as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and more specifically against the human (h) cytosolic isoforms hCA I and II and the transmembrane, tumor-associated hCA IX and XII. Most of the novel compounds were medium potency-weak hCA I inhibitors (Kis in the range of 295–10,000 nM), but were more effective hCA II inhibitors (Kis of 1.7–887 nM). The tumor-associated hCA IX was also inhibited, with Kis in the micromolar range, whereas against hCA XII the inhibition constants were in the range of 90–3746 nM. The structure–activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoforms being established. The high sequence hCA alignment homology and molecular docking studies was performed in order to rationalize the activities reported and binding mode to different hCA as inhibitors.  相似文献   

19.
We report a series of novel metanilamide-based derivatives 3aq bearing the 2-mercapto-4-oxo-4H-quinazolin-3-yl moiety as tail. All compounds were synthesized by means of straightforward condensation procedures and were investigated in vitro for their inhibition potency against the human (h) carbonic anhydrase (CA; EC 4.2.1.1.1) isoforms I, II, IX and XII. Among all compounds tested the 6-iodo 3g and the 7-fluoro 3i derivatives were the most potent inhibitors against the tumor associated CA IX and XII isoform (KIs 1.5 and 2.7 nM respectively for the hCA IX and KIs 0.57 and 1.9 nM respectively for the hCA XII).The kinetic data reported here strongly support compounds of this type for their future development as radiotracers in tumor pathologies which are strictly dependent on the enzymatic activity of the hCA IX and XII isoforms.  相似文献   

20.
Carbonic anhydrase IX (CA IX) has recently been validated as an antitumor/antimetastatic drug target. In this study, we examined the underlying molecular mechanisms and the anticancer activity of sulfonamide CA IX inhibitors against cervical cancer cell lines. The effects of several sulfonamides on HeLa, MDA-MB-231, HT-29 cancer cell lines, and normal cell lines (HEK-293, PNT-1A) viability were determined. The compounds showed high cytotoxic and apoptotic activities, mainly against HeLa cells overexpressing CA IX. We were also examined for intracellular reactive oxygen species (ROS) production; intra-/extracellular pH changes, for inhibition of cell proliferation, cellular mitochondrial membrane potential change and for the detection of caspase 3, 8, 9, and CA IX protein levels. Of the investigated sulfonamides, one compound was found to possess high cytotoxic and anti-proliferative effects in HeLa cells. The cytotoxic effect occurred via apoptosis, being accompanied by a return of pHe/pHi towards normal values as for other CA IX inhibitors investigated earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号