首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Osteoclasts modulate bone resorption under physiological and pathological conditions. Previously, we showed that both estrogens and retinoids regulated osteoclastic bone resorption and postulated that such regulation was directly mediated through their cognate receptors expressed in mature osteoclasts. In this study, we searched for expression of other members of the nuclear hormone receptor superfamily in osteoclasts. Using the low stringency homologous hybridization method, we isolated the peroxisome proliferator-activated receptor delta/beta (PPARdelta/beta) cDNA from mature rabbit osteoclasts. Northern blot analysis showed that PPARdelta/beta mRNA was highly expressed in highly enriched rabbit osteoclasts. Carbaprostacyclin, a prostacyclin analogue known to be a ligand for PPARdelta/beta, significantly induced both bone-resorbing activities of isolated mature rabbit osteoclasts and mRNA expression of the cathepsin K, carbonic anhydrase type II, and tartrate-resistant acid phosphatase genes in these cells. Moreover, the carbaprostacyclin-induced bone resorption was completely blocked by an antisense phosphothiorate oligodeoxynucleotide of PPARdelta/beta but not by the sense phosphothiorate oligodeoxynucleotide of the same DNA sequence. Our results suggest that PPARdelta/beta may be involved in direct modulation of osteoclastic bone resorption.  相似文献   

2.
The characteristics of a monoclonal antibody produced against osteoclast-like multinucleated cells (MNCs) formed in rat bone marrow cultures were examined immunohistochemically and biochemically. The in vitro immunization was performed using as immunogen the MNCs from rat bone marrow cell culture, which revealed many characteristics of osteoclasts. After screening and cloning of hybridomas, the monoclonal antibody HOK 1 was obtained. This antibody reacted weakly with stromal cells and intensely with both MNCs and their putative migratory traces on culture dishes. Immunofluorescent examination of paraffin sections revealed intense reactivity on the epithelium of the choroid plexus, the ileum and the proximal-convoluted tubules of the kidney, and also on bone cells such as osteocytes, osteoblasts, and osteoclasts. Western blotting using purified rat osteopontin verified that the antigen recognized by HOK 1 was osteopontin. Positive HOK 1 immunoreactivity was further observed in the resorption lacunae formed by a culture of MNCs on human tooth slices and on the surface of osteoclasts. The present data suggested that osteopontin is preferentially present on the resorption lacunae in resorbing calcified matrices and that osteoclasts under a specific state might trap this protein on their cell surface.  相似文献   

3.
Matrix protein effects on the differentiated activity of osteoclasts were examined in order to understand the functional significance of bone protein interactions with osteoclasts. Bone acidic glycoprotein 75 (BAG 75) from rat calvariae inhibited the resorption of bone by isolated rat osteoclasts with IC50 = 1 nM compared to IC50 = 10 nM for chicken osteoclasts. By contrast, other phosphoproteins similarly isolated from bone were less effective in inhibiting resorption with IC50 = 100 nM osteopontin and IC50 greater than 100 nM bone sialoprotein. Likewise, RGD-containing matrix proteins vitronectin, thrombospondin, and fibronectin all displayed IC50 greater than or equal to 100 nM. Mechanistically, 10 nM BAG 75 marginally slowed, but did not block, the association of bone particles with chicken osteoclasts compared with osteopontin or control media. Pretreatment of osteoclasts with 50 nM BAG 75 had no effect on subsequent bone resorption; however, pretreatment of bone with BAG 75 before incubation with osteoclasts reduced the extent of resorption by 55%. These data suggest that a BAG 75/bone surface complex, rather than BAG 75 alone, represents the inhibitory form. Consistent with this hypothesis, direct binding studies provided no evidence of specific, high-affinity receptors on osteoclasts for BAG 75, nor was an excess of BAG 75 (100 nM) able to compete with 0.3 nM sechistatin for osteoclastic avB3-like receptors. However, BAG 75 displayed cooperative binding to tissue fragments and bone particles at concentrations greater than 10 nM, suggesting that BAG 75 self-associates into higher-order species on bone surfaces. Electron microscopy confirmed the time-dependent polymerization of BAG 75 into interconnecting filaments. These data suggest a novel, inhibitory activity for surface-bound BAG 75 on bone resorption that does not appear to involve the osteoclastic avB3-like integrin.  相似文献   

4.
Osteopontin is an RGDS-containing protein that acts as a ligand for the alpha(v)beta(3) integrin, which is abundantly expressed in osteoclasts, cells responsible for bone resorption in osteopenic diseases such as osteoporosis and hyperparathyroidism. However, the role of osteopontin in the process of bone resorption has not yet been fully understood. Therefore, we investigated the direct function of osteopontin in bone resorption using an organ culture system. The amount of (45)Ca released from the osteopontin-deficient bones was not significantly different from the basal release from wild type bones. However, in contrast to the parathyroid hormone (PTH) enhancement of the (45)Ca release from wild type bones, PTH had no effect on (45)Ca release from organ cultures of osteopontin-deficient bones. Because PTH is located upstream of receptor activator of NF-kappaB ligand (RANKL), that directly promotes bone resorption, we also examined the effect of RANKL. Soluble RANKL with macrophage-colony stimulating factor enhanced (45)Ca release from the bones of wild type fetal mice but not from the bones of osteopontin-deficient mice. To obtain insight into the cellular mechanism underlying the phenomena observed in osteopontin-deficient bone, we investigated the number of tartrate-resistant acid phosphatase (TRAP)-positive cells in the bones subjected to PTH treatment in cultures. The number of TRAP-positive cells was increased significantly by PTH in wild type bone; however, no such PTH-induced increase in TRAP-positive cells was observed in osteopontin-deficient bones. These results indicate that the absence of osteopontin suppressed PTH-induced increase in bone resorption via preventing the increase in the number of osteoclasts in the local milieu of bone.  相似文献   

5.
Bone, one of the favored sites for tumor metastasis, is a dynamic organ undergoing formation and resorption. We found bone metastasis with osteolytic lesion in the bone marrow of the femur by injecting BW5147 T-lymphoma cells into the tail vein of AKR mice. To understand this bone destruction, we constructed a cDNA library from BW5147 with a cloning vector that allowed in vitro synthesis of mRNAs, and then identified a particular cDNA clone by adding the conditioned medium from Xenopus oocytes following injection of the mRNA synthesized in vitro to primary bone marrow heterogeneous cell populations on hydroxyapatite thin films. By means of this method, we isolated a factor with 16% leucine residues, termed neurochondrin, that induces hydroxyapatite resorptive activity in bone marrow cells resistant to bafilomycin A1, an inhibitor of macrophage- and osteoclast-mediated resorption. Expression of the gene was localized to chondrocyte, osteoblast, and osteocyte in the bone and to the hippocampus and Purkinje cell layer of cerebellum in the brain. This may provide insights into the molecular mechanisms underlying bone resorption with potential implications for the activation of cells other than macrophages and osteoclasts in bone marrow cells.  相似文献   

6.
The fusion of monocyte/macrophage lineage cells into fully active, multinucleated, bone resorbing osteoclasts is a complex cell biological phenomenon that utilizes specialized proteins. OC-STAMP, a multi-pass transmembrane protein, has been shown to be required for pre-osteoclast fusion and for optimal bone resorption activity. A previously reported knockout mouse model had only mononuclear osteoclasts with markedly reduced resorption activity in vitro, but with paradoxically normal skeletal micro-CT parameters. To further explore this and related questions, we used mouse ES cells carrying a gene trap allele to generate a second OC-STAMP null mouse strain. Bone histology showed overall normal bone form with large numbers of TRAP-positive, mononuclear osteoclasts. Micro-CT parameters were not significantly different between knockout and wild type mice at 2 or 6 weeks old. At 6 weeks, metaphyseal TRAP-positive areas were lower and mean size of the areas were smaller in knockout femora, but bone turnover markers in serum were normal. Bone marrow mononuclear cells became TRAP-positive when cultured with CSF-1 and RANKL, but they did not fuse. Expression levels of other osteoclast markers, such as cathepsin K, carbonic anhydrase II, and NFATc1, were not significantly different compared to wild type. Actin rings were present, but small, and pit assays showed a 3.5-fold decrease in area resorbed. Restoring OC-STAMP in knockout cells by lentiviral transduction rescued fusion and resorption. N- and C-termini of OC-STAMP were intracellular, and a predicted glycosylation site was shown to be utilized and to lie on an extracellular loop. The site is conserved in all terrestrial vertebrates and appears to be required for protein stability, but not for fusion. Based on this and other results, we present a topological model of OC-STAMP as a 6-transmembrane domain protein. We also contrast the osteoclast-specific roles of OC- and DC-STAMP with more generalized cell fusion mechanisms.  相似文献   

7.
Antigen- or mitogen-stimulated leukocytes release bone-resorbing activity into culture supernatants in vitro. Among the agents likely to be present in such supernatants are monocyte-derived tumor necrosis factor (TNF-alpha) and lymphocyte-derived tumor necrosis factor (TNF-beta) (lymphotoxin), both of which have recently been shown to stimulate bone resorption in organ culture. To identify the mechanism of action of these agents, we compared bone resorption by isolated osteoclasts with bone resorption by osteoclasts cocultured with osteoblastic cells, and with bone resorption by osteoclasts incubated with supernatants from osteoblastic cells, in the presence and absence of recombinant TNF-alpha and TNF-beta. We found that neither TNF-alpha nor TNF-beta had any significant effect on bone resorption by isolated osteoclasts, but in the presence of osteoblasts the agents caused a twofold to threefold stimulation of bone resorption. A similar degree of stimulation was achieved by supernatants from osteoblasts incubated with TNF before addition to osteoclasts, compared with supernatants to which TNF were added after osteoblast incubation. These experiments suggest that TNF-alpha and TNF-beta stimulate bone resorption through a primary effect on osteoblastic cells, which are induced by TNF to produce a factor that stimulates osteoclastic resorption. Half-maximal stimulation of resorption occurred at 1.5 X 10(-10) M and 2.5 X 10(-10) M for TNF-alpha and TNF-beta, respectively. This degree of potency is comparable to that of parathyroid hormone, the major physiologic systemic regulator of bone resorption, and suggests that the TNF may exert a significant influence on osteoclastic bone resorption in vivo.  相似文献   

8.
9.
Stimulation of osteoclastic bone resorption by hydrogen peroxide.   总被引:8,自引:0,他引:8  
The molecular mechanisms underlying the pathophysiology of bone destruction still remain poorly understood. We have found that hydrogen peroxide (H2O2), a reactive oxygen species (ROS), is a potent stimulator of osteoclastic bone resorption and cell motility. A marked enhancement of bone resorption was noted when rat osteoclasts, cultured on devitalised bovine cortical bone, were exposed to 10 nM [H2O2]. Apart from exposing osteoclasts to a low extracellular pH, which is known to enhance osteoclastic bone resorption, we provide first evidence for a molecule that stimulates osteoclastic bone resorption in osteoclast cultures that do not respond to parathyroid hormone and 1, 25 dihydroxyvitamin D3. We envisage that both basic biological and practical clinical implications may eventually follow from these studies.  相似文献   

10.
L-glutamate (Glu) is the predominant neuromediator in the mammalian central nervous system (CNS). Bone is highly innervated and there is growing evidence of a neural control of bone cell metabolism. The recent discovery of Glu-containing nerve fibers in bone and Glu receptors (GluR) and transporters in bone cells suggest that this neuromediator may also act as a signaling molecule in bone and regulate bone cell function. Our previous studies have demonstrated that ionotropic N-Methyl-D-Aspartate (NMDA) GluR are highly expressed by mammalian osteoclasts. NMDA receptors (NMDAR) are heteromers associating the NR1 subunit and one of the four types of NR2 subunits (NR2A to D). We showed that osteoclasts express NR1, NR2B and NR2D subunits, suggesting a molecular diversity of NMDAR in these cells. Electrophysiological studies have confirmed that NMDAR are functional in mature osteoclasts, and features of Glu-induced current recorded in these cells indicate a major NR2D subunit composition. Using an in vitro assay of bone resorption, we showed that several antagonists of NMDAR binding to different sites of the receptor inhibit bone resorption. In particular, the specific NMDAR channel blocker MK801 had no effect on osteoclast attachment to bone and survival while it rapidly decreased the percentage of osteoclasts with actin ring structures that are associated with actively resorbing osteoclasts. NMDAR may thus be involved in adhesion-induced formation of the sealing zone required for bone resorption. NMDAR are also expressed by osteoclast precursors isolated from mouse bone marrow. We recently confirmed the presence of NR1, NR2B and NR2D in these cells and demonstrated their expression at all differentiation stages from osteoclast precursors to mature resorbing osteoclasts. No regulation of these subunits mRNA expression levels was observed throughout the osteoclastic differentiation sequence. Activation of NMDAR may therefore represent a new mechanism for regulating osteoclast formation and activity. While the origin of Glu in bone is still unknown, the possibility of a glutamatergic neurotransmission in this tissue is suggested by the detection of Glu in nerve fibers in close contact to bone cells. Furthermore, we recently demonstrated that sciatic neurectomy in growing rats induces a bone loss associated with a reduction of nerve profiles immunostained for Glu. These results suggest that Glu may be released from glutamatergic nerve profiles present in bone and therefore contribute to the local regulation of bone cell function.  相似文献   

11.
12.
Although glucocorticoids (GCs) are physiologically essentialfor bone metabolism, it is generally accepted that high dosesof GCs cause bone loss through a combination of decreased boneformation and increased bone resorption. However, the actionof GCs on mature osteoclasts remains contradictory. In thisstudy, we have examined the effect of GCs on osteoclasticbone-resorbing activity and osteoclast apoptosis, by using twodifferent cell types, rabbit unfractionated bone cells andhighly enriched mature osteoclasts (>95% of purity).Dexamethasone (Dex, 10-10–10-7 M) inhibited resorption pit formation on a dentine slice by the unfractionated bone cells in a dose- and time-dependent manner.However, Dex had no effect on the bone-resorbing activity of the isolated mature osteoclasts. When the isolated osteoclastswere co-cultured with rabbit osteoblastic cells, the osteoclastic bone resorption decreased in response to Dex,dependent on the number of osteoblastic cells. Like the effecton the bone resorption, Dex induced osteoclast apoptosis in cultures of the unfractionated bone cells, whereas it did not promote the apoptosis of the isolated osteoclasts. An inhibitorof caspases, Z-Asp-CH2-DCB attenuated both the inhibitory effecton osteoclastic bone resorption and the stimulatory effect onthe osteoclast apoptosis. In addition, the osteoblastic cellswere required for the osteoclast apoptosis induced by Dex. These findings indicate that the main target cells of GCs arenon-osteoclastic cells such as osteoblasts and that GCsindirectly inhibit bone resorption by inducing apoptosis ofthe mature osteoclasts through the action of non-osteoclasticcells. This study expands our knowledge about the multifunctional roles of GCs in bone metabolism.  相似文献   

13.
The root of Morinda officinalis has been claimed to have a protective effect against bone loss in sciatic neurectomized and ovariectomized osteoporotic rats, and this protective effect is supposed to be attributed to anthraquinone compounds in the plant. In the present study, we investigated the effects of three anthraquinones isolated from M. officinalis, including 1, 3, 8-trihydroxy-2-methoxy-anthraquinone (1), 2-hydroxy-1-methoxy-anthraquinone (2) and rubiadin (3) on bone resorption activity in vitro and the mechanism on osteoclasts derived from rat bone marrow cells. Compound 1, 2 and 3 decreased the formation of bone resorption pits, the number of multinucleated osteoclasts, and the activity of tartrate resistant acid phosphates (TRAP) and cathepsin K in the coculture system of osteoblasts and bone marrow cells in the presence of 1, 25-dihydroxyvitamine D(3) and dexamethasone. They also enhanced the apoptosis of osteoclasts induced from bone marrow cells with M-CSF and RANKL. In addition, Compound 1, 2 and 3 improved the ratio of mRNA and protein expression of OPG and RANKL in osteoblasts, interfered with the JNK and NF-κB signal pathway, and reduced the expression of calcitonin receptor (CTR) and carbonic anhydrase/II (CA II) in osteoclasts induced from bone marrow cells with M-CSF and RANKL. These findings indicate that the anthraquinone compounds from M. officinalis are potential inhibitors of bone resorption, and may also serve as evidence to explain the mechanism of the inhibitory effects of some other reported anthraquinones on bone loss.  相似文献   

14.
Disruption of ephrin B1 in collagen I producing cells in mice results in severe skull defects and reduced bone formation. Because ephrin B1 is also expressed during osteoclast differentiation and because little is known on the role of ephrin B1 reverse signaling in bone resorption, we examined the bone phenotypes in ephrin B1 conditional knockout mice, and studied the function of ephrin B1 reverse signaling on osteoclast differentiation and resorptive activity. Targeted deletion of ephrin B1 gene in myeloid lineage cells resulted in reduced trabecular bone volume, trabecular number and trabecular thickness caused by increased TRAP positive osteoclasts and bone resorption. Histomorphometric analyses found bone formation parameters were not changed in ephrin B1 knockout mice. Treatment of wild-type precursors with clustered soluble EphB2-Fc inhibited RANKL induced formation of multinucleated osteoclasts, and bone resorption pits. The same treatment of ephrin B1 deficient precursors had little effect on osteoclast differentiation and pit formation. Similarly, activation of ephrin B1 reverse signaling by EphB2-Fc treatment led to inhibition of TRAP, cathepsin K and NFATc1 mRNA expression in osteoclasts derived from wild-type mice but not conditional knockout mice. Immunoprecipitation with NHERF1 antibody revealed ephrin B1 interacted with NHERF1 in differentiated osteoclasts. Treatment of osteoclasts with exogenous EphB2-Fc resulted in reduced phosphorylation of ezrin/radixin/moesin. We conclude that myeloid lineage produced ephrin B1 is a negative regulator of bone resorption in vivo, and that activation of ephrin B1 reverse signaling inhibits osteoclast differentiation in vitro in part via a mechanism that involves inhibition of NFATc1 expression and modulation of phosphorylation status of ezrin/radixin/moesin.  相似文献   

15.
Data in the literature suggest that site-specific differences exist in the skeleton with respect to digestion of bone by osteoclasts. Therefore, we investigated whether bone resorption by calvarial osteoclasts (intramembranous bone) differs from resorption by long bone osteoclasts (endochondral bone). The involvement of two major classes of proteolytic enzymes, the cysteine proteinases (CPs) and matrix metalloproteinases (MMPs), was studied by analyzing the effects of selective low molecular weight inhibitors of these enzymes on bone resorption. Mouse tissue explants (calvariae and long bones) as well as rabbit osteoclasts, which had been isolated from both skeletal sites and subsequently seeded on bone slices, were cultured in the presence of inhibitors and resorption was analyzed. The activity of the CP cathepsins B and K and of MMPs was determined biochemically (CPs and MMPs) and enzyme histochemically (CPs) in explants and isolated osteoclasts. We show that osteoclastic resorption of calvarial bone depends on activity of both CPs and MMPs, whereas long bone resorption depends on CPs, but not on the activity of MMPs. Furthermore, significantly higher levels of cathepsin B and cathepsin K activities were expressed by long bone osteoclasts than by calvarial osteoclasts. Resorption of slices of bovine skull or cortical bone by osteoclasts isolated from long bones was not affected by MMP inhibitors, whereas resorption by calvarial osteoclasts was inhibited. Inhibition of CP activity affected the resorption by the two populations of osteoclasts in a similar way. We conclude that this is the first report to show that significant differences exist between osteoclasts of calvariae and long bones with respect to their bone resorbing activities. Resorption by calvarial osteoclasts depends on the activity of CPs and MMPs, whereas resorption by long bone osteoclasts depends primarily on the activity of CPs. We hypothesize that functionally different subpopulations of osteoclasts, such as those described here, originate from different sets of progenitors.  相似文献   

16.
Bone resorption and bone remodelling in juvenile carp, Cyprinus carpio L.   总被引:1,自引:0,他引:1  
The present study considers the important role of bone resorption for bone growth in general, and aims to clarify if and how bone resorption contributes to the skeletal development of carp, Cyprinus carpio L., a teleost species with ‘normal’ osteocyte‐containing (cellular) bone. To ensure the identification of osteoclasts and sites of bone resorption independently from the morphology of the bony cells, bones were studied by histological procedures, and by demonstration of the enzymes which serve as osteoclast markers, viz. tartrate resistant acid phosphatase (TRAP), ATPase and a vacuolar proton pump. Two types of bone‐resorbing cells were observed in juvenile carp: (1) multinucleated giant cells displaying morphological and biochemical attributes which are known from mammalian osteoclasts; and (b) flat cells which lack a visible ruffled border and for which identification requires the performance of enzyme histochemical procedures. Bone resorption performed by osteoclasts mainly occurs at endosteal bone surfaces. To a lesser extent, bone resorption also takes place at periosteal bone surfaces, but without an apparent connection to bone growth. The latter observation, and the occurrence of bone remodelling, suggest that the endoskeleton of juvenile carp might be involved in mineral metabolism. Morphological differences and biochemical similarities to bone resorption in teleosts with acellular bone are discussed.  相似文献   

17.
The significance of low pH-induced stimulation of osteoclastic bone resorption has recently been questioned following the finding that embryonic chick osteoclasts were only weakly stimulated by extremely low pH (6.5) and that the effect was transient, apparently due to cytotoxicity. Although low pH in the range 6.8–7.2 is known to stimulate rat osteoclasts over 24 h, the long-term effects of low pH on mammalian osteoclasts are not known. We have therefore conducted time-course studies over 72 h on the effect of pH in the range 6.3–7.3 on bone resorption and cytotoxicity in both rat and chick osteoclasts. In neonatal rat osteoclasts, lowering extracellular pH produced a powerful and significant stimulation of resorption over 24 h. Detailed analysis of the resorption focus revealed that this was due mainly to a higher proportion of active osteoclasts at lower pH. In addition, osteoclasts excavated slightly larger pits at low pH. Stimulation was no longer significant at 72 h, however, due to a pH-dependent slowing of resorption at acid pH associated 1) with cytotoxicity primarily of nonosteoclastic cells and 2) with an acceleration of bone resorption after 24 h at more alkaline pH. Resorption stimulated by low pH was associated with the formation of actin-rich “clear zones” within the osteoclast. Chick osteoclasts were less sensitive to low pH than rat osteoclasts but nonetheless showed a consistently higher level of resorption at low pH over 24–72 h. These results suggest that protons play an important regulatory role in neonatal rat osteoclasts, and stimulate the formation of clear zones. The lower sensitivity of the chick osteoclast to acid pH may be due to a species difference or the chick osteoclast's higher basal level of resorption. © 1993 Wiley-Liss, Inc.  相似文献   

18.
19.
MCP-1 (monocyte chemotactic protein-1) is a CC chemokine that is induced by receptor activator of NFkappaB ligand (RANKL) in human osteoclasts. In the absence of RANKL, treatment of human peripheral blood mononuclear cells with macrophage colony-stimulating factor and MCP-1 resulted in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells that are positive for calcitonin receptor (CTR) and a number of other osteoclast markers, including nuclear factor of activated t cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). Although NFATc1 was strongly induced by MCP-1 and was observed in the nucleus, MCP-1 did not permit the formation of bone-resorbing osteoclasts, although these cells had the typical TRAP(+)/CTR(+) multinuclear phenotype of osteoclasts. Despite a similar appearance to osteoclasts, RANKL treatment was required in order for TRAP(+)/CTR(+) multinuclear cells to develop bone resorption activity. The lack of bone resorption was correlated with a deficiency in expression of certain genes related to bone resorption, such as cathepsin K and MMP9. Furthermore, calcitonin blocked the MCP-1-induced formation of TRAP(+)/CTR(+) multinuclear cells as well as blocking osteoclast bone resorption activity, indicating that calcitonin acts at two stages of osteoclast differentiation. Ablation of NFATc1 in mature osteoclasts did not prevent bone resorption activity, suggesting NFATc1 is involved in cell fusion events and not bone resorption. We propose that the MCP-1-induced TRAP(+)/CTR(+) multinuclear cells represent an arrested stage in osteoclast differentiation, after NFATc1 induction and cellular fusion but prior to the development of bone resorption activity.  相似文献   

20.
Breast cancers commonly cause osteolytic metastases in bone, a process that is dependent upon osteoclast-mediated bone resorption, but the mechanism responsible for tumor-mediated osteoclast activation has not yet been clarified. In the present study we utilized a well-known human breast cancer cell line (MDA-231) in order to assess its capability to influence osteoclastogenesis in human bone marrow cultures and bone resorption in fully differentiated osteoclasts. We demonstrated that conditioned medium (CM) harvested from MDA-231 increased the formation of multinucleated TRAP-positive cells in bone marrow cultures. Bone resorption activity of fully differentiated human osteoclasts and of osteoclast-like cell lines, from giant cell tumors of bone (GCT), was highly increased by the presence of MDA-231 CM. Moreover, while MDA-231 by themselves did not produce IL-6 tumor cell, CM increased the secretion of IL-6 by primary human osteoclasts and GCT cell lines compared to untreated controls. These data suggest that MDA-231 produce osteoclastic activating factor(s) that increase both osteoclast formation in bone marrow culture and bone resorption activity by mature cells. Moreover, breast cancer cells stimulate IL-6 secretion by osteoclasts that is one of the factors known to supports osteoclastogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号