首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout life, bone is remodelled in a dynamic process which results in a balance between bone formation by osteoblasts and bone resorption by osteoclasts. It is now clearly established that osteoblasts/stromal cells are crucial for differentiation of osteoclasts, through a mechanism involving cell-to-cell contact. However, the possible involvement of osteoblasts and stromal cells in the survival of osteoclasts has not yet been clearly demonstrated. In this study, we assessed the influence of cellular microenvironment, especially osteoblasts, on the osteoclast survival. Our results have shown significant differences in osteoclastic survival between unfractionated bone cells and pure osteoclasts. Furthermore, we have shown that addition of 1.25(OH)2D3 to unfractionated bone cells resulted in a dose-dependent increase in osteoclast survival. Finally, we have shown that a conditioned medium obtained from rat osteoblastic cells cultured with calcitriol was able to increase significantly survival of pure osteoclasts. Taken together, these results strongly suggest that osteoblastic cells present in the bone microenvironment might play a role in the osteoclastic survival by producing soluble factor which modulate osteoclast apoptosis.  相似文献   

2.
We previously reported that fibroblast growth factor-2 (FGF-2) acts not only on osteoblasts to stimulate osteoclastic bone resorption indirectly but also on mature osteoclasts directly. In this study, we investigated the mechanism of this direct action of FGF-2 on mature osteoclasts using mouse and rabbit osteoclast culture systems. FGF-2 stimulated pit formation resorbed by isolated rabbit osteoclasts moderately from low concentrations (>/=10(-12) m), whereas at high concentrations (>/=10(-9) m) it showed stimulation on pit formation resorbed by unfractionated bone cells very potently. FGF-2 (>/=10(-12) m) also increased cathepsin K and MMP-9 mRNA levels in mouse and rabbit osteoclasts. Among FGF receptors (FGFR1 to 4) only FGFR1 was detected on isolated mouse osteoclasts, whereas all FGFRs were identified on mouse osteoblasts. FGF-2 (>/=10(-12) m) up-regulated the phosphorylation of cellular proteins, including p42/p44 mitogen-activated protein (MAP) kinase, and increased the kinase activity of immunoprecipitated FGFR1 in mouse osteoclasts. The stimulation of FGF-2 on mouse and rabbit osteoclast functions was abrogated by PD-98059, a specific inhibitor of p42/p44 MAP kinase. These results strongly suggest that FGF-2 acts directly on mature osteoclasts through activation of FGFR1 and p42/p44 MAP kinase, causing the stimulation of bone resorption at physiological or pathological concentrations.  相似文献   

3.
Skeletal tissue homeostasis is maintained via the balance of osteoclastic bone resorption and osteoblastic bone formation. Autophagy and apoptosis are essential for the maintenance of homeostasis and normal development in cells and tissues. We found that Bax-interacting factor 1 (Bif-1/Endophillin B1/SH3GLB1), involving in autophagy and apoptosis, was upregulated during osteoclastogenesis. Furthermore, mature osteoclasts expressed Bif-1 in the cytosol, particularly the perinuclear regions and podosome, suggesting that Bif-1 regulates osteoclastic bone resorption. Bif-1-deficient (Bif-1 −/−) mice showed increased trabecular bone volume and trabecular number. Histological analyses indicated that the osteoclast numbers increased in Bif-1 −/− mice. Consistent with the in vivo results, osteoclastogenesis induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) was accelerated in Bif-1 −/− mice without affecting RANKL-induced activation of RANK downstream signals, such as NF-κB and mitogen-activated protein kinases (MAPKs), CD115/RANK expression in osteoclast precursors, osteoclastic bone-resorbing activity and the survival rate. Unexpectedly, both the bone formation rate and osteoblast surface substantially increased in Bif-1 −/− mice. Treatment with β-glycerophosphate (β-GP) and ascorbic acid (A.A) enhanced osteoblastic differentiation and mineralization in Bif-1 −/− mice. Finally, bone marrow cells from Bif-1 −/− mice showed a significantly higher colony-forming efficacy by the treatment with or without β-GP and A.A than cells from wild-type (WT) mice, suggesting that cells from Bif-1 −/− mice had higher clonogenicity and self-renewal activity than those from WT mice. In summary, Bif-1 might regulate bone homeostasis by controlling the differentiation and function of both osteoclasts and osteoblasts (235 words).  相似文献   

4.
Although high inorganic phosphate (Pi) concentration in culture media directly inhibits generation of new osteoclasts and also inhibits bone resorption by mature osteoclasts, its precise mechanism and the physiological role have not been elucidated. The present study was performed to investigate these issues. Increase in extracellular Pi concentration ([Pi](e)) (2.5-4 mM) concentration dependently inhibited 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] or parathyroid hormone (PTH)-(1-34)-induced osteoclast-like cell formation from unfractionated bone cells in the presence of stromal cells. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited 1,25(OH)(2)D(3)-, PTH-(1-34)-, or receptor activator of NF-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF)-induced osteoclast-like cell formation from hemopoietic blast cells in the absence of stromal cells. Increase in [Pi](e) (2.5-4 mM) dose dependently stimulated the expression of osteoprotegerin (OPG) mRNA and increased the expression of OPG mRNA suppressed by PTH-(1-34) or 1,25(OH)(2)D(3) in unfractionated bone cells, while it did not affect RANKL mRNA. Increase in [Pi](e) (2.5-4 mM) concentration dependently inhibited the bone-resorbing activity of isolated rabbit osteoclasts. Increase in [Pi](e) (4 mM) induced the apoptosis of isolated rabbit osteoclasts while it did not affect the apoptosis of osteoclast precursor cells and mouse macrophage-like cell line C7 cells that can differentiate into osteoclasts in the presence of RANKL and M-CSF. These results indicate that increase in [Pi](e) inhibits osteoclast differentiation both by up-regulating OPG expression and by direct action on osteoclast precursor cells. It is also indicated that increase in [Pi](e) inhibits osteoclastic activity at least in part by the direct induction of apoptosis of osteoclasts.  相似文献   

5.
6.
Alendronate, an aminobisphosphonate used in the treatment of osteoporosis, is a potent inhibitor of bone resorption. Its mechanism of action is unknown. Because it localizes to bone surfaces, we compared the sensitivity of components of the resorptive process to incubation on alendronate-coated bone surfaces. We found that bone resorption by osteoclasts isolated from neonatal rat bone was unaffected by alendronate (10-4 M). Osteoclast production in bone marrow cultures, as assessed by the production of calcitonin-receptor positive cells, was observed even at 10-4 M, but bone resorption in these cultures was almost completely abolished by 10-6 M alendronate. The greater sensitivity of osteoclast activation to inhibition by alendronate that these results suggest was supported by similar inhibition of osteoblast-mediated activation of osteoclasts from neonatal rat bone. Thus, activation of osteoclasts by osteoblastic/stromal cells is apparently the most sensitive component of the pathway whereby bone resorption is affected. Moreover, the ability of alendronate to suppress osteoclastic activation does not depend on resorption-mediated release of alendronate from bone surfaces. This ability extends the range of cell types and processes that might be affected by alendronate, beyond those in the immediate vicinity of resorbing cells, to include any cell that comes into contact with alendronate-coated bone surfaces. J. Cell. Physiol. 172:79–86, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Colony stimulating factors (CSFs) regulate the survival, proliferation and differentiation of haemopoietic progenitor cells, as well as the functional activity of mature cells. Because the osteoclast is derived from haemopoietic tissue, and because osteoblastic cells produce CSFs, we tested the effects of several CSFs on bone resorption by osteoclasts disaggregated from neonatal rat long bone. We found that recombinant macrophage (M)-CSF was a potent inhibitor of bone resorption, causing significant inhibition at concentrations similar to those required to support the growth of macrophage colonies in agar. Unlike other inhibitors of osteoclastic resorption, M-CSF did not alter cytoplasmic motility in time-lapse recordings, suggesting that M-CSF may inhibit osteoclasts through a different transduction mechanism. None of the remaining cytokines tested (granulocyte-macrophage CSF, interleukin 3, interleukin 6, or interferon γ) influenced bone resorption. M-CSF production may be a mechanism by which osteoblastic cells, which produce M-CSF, may regulate osteoclastic function. Alternatively, inhibition of osteoclastic resorption by a CSF that is responsible for amplification of the macrophage compartment may reflect a close lineage relationship between mononuclear phagocytes, in which M-CSF induces a diversion of lineage resources away from osteoclastic function.  相似文献   

8.
Nitric oxide has been shown to play an important role in regulation of bone resorption. However, the role of endogenous nitric oxide on osteoclast activity remains still controversial. In this work, using RT-PCR amplification, we demonstrated that rabbit mature osteoclasts express mRNA encoding for neuronal nitric oxide synthase suggesting that this enzyme could be involved in basal nitric oxide production in these cells. Then we assessed the effect of carboxy-PTIO, a nitric oxide scavenger, on in vitro bone resorption and osteoclast survival. Carboxy-PTIO (10-100 microM) inhibited osteoclastic bone resorption in a dose dependent manner and induced osteoclast apoptosis by a mechanism involving caspase 3 activation. These results suggest that basal concentration of endogenous nitric oxide may be essential for normal bone resorption by supporting osteoclast survival. Because osteoclasts express N-methyl-d-aspartate-receptor (NMDA-R), we hypothesized that in osteoclasts NMDA-R may be involved in nitric oxide production as in neuronal cells. We confirmed that blockade of NMDA-R with specific non-competitive antagonists, MK801 and DEP, strongly inhibited bone resorption. As for carboxy-PTIO, we showed that blockade of NMDA-R by both antagonists induced osteoclast apoptosis in a dose dependent manner by a mechanism dependent on caspase 3 activation. Intracellular calcium concentration in osteoclasts decreased within minutes in the presence of both antagonists. Finally, MK801-induced osteoclast apoptosis was partially reversed in the presence of small amount of SNAP (100 nM), a nitric oxide donor, suggesting that the effect of NMDA-R on osteoclast apoptotic cell death could be due to a decrease in nitric oxide production. Taken together, our results are consistent with the hypothesis that NMDA-R on osteoclasts could have a similar function as those in neuronal cells, i.e., to allow a calcium influx, which in turn activates a constitutive neuronal nitric oxide synthase. Nitric oxide generated by this pathway may be essential for osteoclast survival and hence for normal bone resorption.  相似文献   

9.
Antigen- or mitogen-stimulated leukocytes release bone-resorbing activity into culture supernatants in vitro. Among the agents likely to be present in such supernatants are monocyte-derived tumor necrosis factor (TNF-alpha) and lymphocyte-derived tumor necrosis factor (TNF-beta) (lymphotoxin), both of which have recently been shown to stimulate bone resorption in organ culture. To identify the mechanism of action of these agents, we compared bone resorption by isolated osteoclasts with bone resorption by osteoclasts cocultured with osteoblastic cells, and with bone resorption by osteoclasts incubated with supernatants from osteoblastic cells, in the presence and absence of recombinant TNF-alpha and TNF-beta. We found that neither TNF-alpha nor TNF-beta had any significant effect on bone resorption by isolated osteoclasts, but in the presence of osteoblasts the agents caused a twofold to threefold stimulation of bone resorption. A similar degree of stimulation was achieved by supernatants from osteoblasts incubated with TNF before addition to osteoclasts, compared with supernatants to which TNF were added after osteoblast incubation. These experiments suggest that TNF-alpha and TNF-beta stimulate bone resorption through a primary effect on osteoblastic cells, which are induced by TNF to produce a factor that stimulates osteoclastic resorption. Half-maximal stimulation of resorption occurred at 1.5 X 10(-10) M and 2.5 X 10(-10) M for TNF-alpha and TNF-beta, respectively. This degree of potency is comparable to that of parathyroid hormone, the major physiologic systemic regulator of bone resorption, and suggests that the TNF may exert a significant influence on osteoclastic bone resorption in vivo.  相似文献   

10.
Osteoclasts modulate bone resorption under physiological and pathological conditions. Previously, we showed that both estrogens and retinoids regulated osteoclastic bone resorption and postulated that such regulation was directly mediated through their cognate receptors expressed in mature osteoclasts. In this study, we searched for expression of other members of the nuclear hormone receptor superfamily in osteoclasts. Using the low stringency homologous hybridization method, we isolated the peroxisome proliferator-activated receptor delta/beta (PPARdelta/beta) cDNA from mature rabbit osteoclasts. Northern blot analysis showed that PPARdelta/beta mRNA was highly expressed in highly enriched rabbit osteoclasts. Carbaprostacyclin, a prostacyclin analogue known to be a ligand for PPARdelta/beta, significantly induced both bone-resorbing activities of isolated mature rabbit osteoclasts and mRNA expression of the cathepsin K, carbonic anhydrase type II, and tartrate-resistant acid phosphatase genes in these cells. Moreover, the carbaprostacyclin-induced bone resorption was completely blocked by an antisense phosphothiorate oligodeoxynucleotide of PPARdelta/beta but not by the sense phosphothiorate oligodeoxynucleotide of the same DNA sequence. Our results suggest that PPARdelta/beta may be involved in direct modulation of osteoclastic bone resorption.  相似文献   

11.
Identification of osteopontin in isolated rabbit osteoclasts.   总被引:11,自引:0,他引:11  
Bone remodeling is a complex process coupling bone formation and resorption. Osteoblasts, the bone-forming cells, are known to produce various bone matrix proteins and cytokines; however, little is known about protein factors produced by osteoclasts or bone-resorbing cells. A method utilizing the high affinity of osteoclasts for tissue culture dishes was developed to isolate a large number of pure osteoclasts from rabbit long bones. A cDNA library was then constructed from these isolated osteoclasts, and differential cDNA screening was performed between osteoclasts and spleen cells. Two clones representing osteoclast-specific clones, named OC-1 and OC-2, were isolated. By Northern blot analysis, OC-1 was expressed in osteoclasts and in kidneys, whereas OC-2 was specific for osteoclasts. OC-1 was found to encode osteopontin from its nucleotide sequence, and therefore, osteopontin may have other functions for osteoclastic bone resorption besides osteoclast attachment to bone.  相似文献   

12.
Cancer cells metastasized to bone stimulate osteoclastogenesis resulting in bone destruction. However, the influence of tumor cells on fully differentiated osteoclasts is much less known. We postulated that breast cancer cells directly stimulate the survival of mature osteoclasts. We thus tested the effect of conditioned media (CM) prepared from MDA-MB-231 cells on the activity and apoptosis of osteoclasts isolated from 10-day-old rabbit long bones. First, we demonstrated that CM increased the bone resorbing activity in our cell model of rabbit mature osteoclasts. Using a highly purified osteoclast cell population, we found that MDA-MB-231 CM dramatically inhibited osteoclast apoptosis. In the presence of 20% CM, apoptosis was decreased by approximately 60%. LY294002, a PI3 kinase inhibitor, strongly prevented the CM anti-apoptotic effect. Neutralizing experiments with human antibody revealed that macrophage-colony stimulating factor originating from MDA-MB 231 cells was possibly involved in the CM anti-apoptotic effect. These results suggest that breast cancer cells, in addition to stimulating osteoclastogenesis, potently inhibit mature osteoclast apoptosis, a mechanism which may greatly contribute to their osteolytic potential.  相似文献   

13.
Recent identification in bone of transporters, receptors, and components of synaptic signaling suggests a role for glutamate in the skeleton. We investigated effects of glutamate and its antagonist MK801 on osteoclasts in vitro. Glutamate applied to patch clamped osteoclasts induced significant increases in whole-cell membrane currents (P<0.01) in the presence of the coagonist glycine. Agonist-elicited currents were significantly decreased after application of MK801 (100 microM, P<0.01), but MK801 had no effect on actin ring formation necessary for osteoclast polarization, attachment, and resorption. In cocultures of bone marrow cells and osteoblasts in which osteoclasts develop, MK801 inhibited osteoclast differentiation and reduced resorption of pits in dentine (3 to 100 microM; P<0.001). MK801 added early in the culture (for as little as 2-4 days) was as effective as addition for the entire culture period. Addition of MK801 for any time after day 7 of culture was ineffective in reducing osteoclast activity. Using rat and rabbit mature osteoclasts cultured on dentine or explants of mouse calvariae prelabeled with (45)Ca, we could not detect significant effects of MK801 on osteoclastic resorption. These data show clearly that glutamate receptor function is critical during osteoclastogenesis and suggest that glutamate is less important in regulating mature osteoclast activity.-Peet, N. M., Grabowski, P. S., Laketic-Ljubojevic, I., Skerry, T. M. The glutamate receptor antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly involving osteoclast differentiation.  相似文献   

14.
The signaling through receptor tyrosine kinases expressed on mature osteoclasts has recently been suggested to be involved in osteoclastic bone resorption. This study investigated the mechanism and the possible physiological relevance of Gas6/Tyro 3, a receptor tyrosine kinase signaling pathway in osteoclasts in stimulating osteoclastic bone resorption using several mouse culture systems. Gas6, expressed ubiquitously in bone cells, did not affect the differentiation or the survival of osteoclasts, but stimulated osteoclast function to form resorbed pits on a dentine slice. The expression of its receptor, Tyro 3, was seen only in mature osteoclasts among bone cells. Gas6 up-regulated the phosphorylation of cellular proteins including p42/p44 mitogen-activated protein kinase (MAPK), but not p38 or c-Jun N-terminal kinase MAPK, and increased the kinase activity of immunoprecipitated Tyro 3 in isolated osteoclasts. The ability of Gas6 to stimulate pit formation resorbed by osteoclasts was abrogated by PD98059, a specific inhibitor of p42/p44 MAPK. In addition, the Gas6 mRNA level in bone marrow was up-regulated by ovariectomy and was reduced by estrogen replacement. These results strongly suggest that Gas6 acts directly on mature osteoclasts through activation of Tyro 3 and p42/p44 MAPK, possibly contributing to the bone loss by estrogen deficiency.  相似文献   

15.
To elucidate the direct role and mechanism of FGFR1 signaling in the differentiation and activation of osteoclasts, we conditionally inactivated FGFR1 in bone marrow monocytes and mature osteoclasts of mice. Mice deficient in FGFR1 (Fgfr1−/−) exhibited misregulated bone remodeling with reduced osteoclast number and impaired osteoclast function. In vitro assay demonstrated that the number of tartrate-resistant acid phosphatase (TRAP) positive osteoclasts derived from bone marrow monocytes of Fgfr1−/− mice was significantly diminished. The bone resorption activity of mature osteoclasts derived from Fgfr1−/− mice was also suppressed. Further analysis showed that the osteoclasts with FGFR1 deficiency exhibited downregulated expression of genes related to osteoclastic activity including TRAP and MMP-9. The phosphorylation of Erk1/2 mitogen-activated protein (MAP) kinase was also decreased. Our results suggest that FGFR1 is indispensable for complete differentiation and activation of osteoclasts in mice.  相似文献   

16.
Strontium ranelate exerts both an anti-catabolic and an anabolic effect on bone cells. To further investigate the molecular mechanism whereby strontium ranelate inhibits bone resorption, we focused our attention on the effects of strontium ranelate on osteoclast apoptosis and on the underlying mechanism(s). Using primary mature rabbit osteoclasts, we demonstrated that strontium (Sro2+) dose-dependently stimulates the apoptosis of mature osteoclasts. As shown previously for calcium (Cao2+), the Sro2+-induced effect on mature osteoclasts is mediated by the Cao2+-sensing receptor, CaR, which in turn stimulates a phospholipase C-dependent signaling pathway and nuclear translocation of NF-kappaB. Unlike Cao2+, however, Sro2+-induced osteoclast apoptosis was shown to depend on PKCbetaII activation and to be independent of inositol 1,4,5-trisphosphate action. As a consequence of these differences in their intracellular signaling pathways, Sro2+ and Cao2+ in combination were shown to exert a greater effect on mature osteoclast apoptosis than did either divalent cation by itself. Altogether, our results show that Sro2+ acts through the CaR and induces osteoclast apoptosis through a signaling pathway similar to but different in certain respects from that of Cao2+. This difference in the respective signaling cascades enables Sro2+ to potentiate Cao2+-induced osteoclast apoptosis and vice versa. In this manner, it is conceivable that Sro2+ and Cao2+ act together to inhibit bone resorption in strontium ranelate-treated patients.  相似文献   

17.
In teleosts, prolactin is involved in calcium regulation, but its role in scale/bone metabolism is unclear. Using the in-vitro system with goldfish scales developed recently, we explored the effects of teleost prolactin, growth hormone, and somatolactin on osteoclasts and osteoblasts. Addition of prolactin at concentrations of 0.01-100 ng/ml reduced osteoclastic activity, partly via osteoclast apoptosis, after 6-18 h incubation. Conversely, growth hormone and somatolactin at a concentration of 100 ng/ml increased osteoclastic activity after 18 h incubation, indicating the specificity of the inhibitory effect of prolactin on osteoclastic activity. On the other hand, these three hormones promoted osteoblastic activity at concentrations of 10-100 ng/ml. The results from this study are the first demonstration of direct effects of prolactin on scale/bone metabolism and osteoclastic activity in a teleost.  相似文献   

18.
BackgroundUranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts.MethodsThe effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses.ResultsWe observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis.ConclusionsWe show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis.General significanceWe describe cellular and molecular effects of uranium that potentially affect bone homeostasis.  相似文献   

19.
An excess of osteoclastic bone resorption relative to osteoblastic bone formation results in progressive bone loss, characteristic of osteoporosis. Understanding the mechanisms of osteoclast differentiation is essential to develop novel therapeutic approaches to prevent and treat osteoporosis. We showed previously that Wrch1/RhoU is the only RhoGTPase whose expression is induced by RANKL during osteoclastogenesis. It associates with podosomes and the suppression of Wrch1 in osteoclast precursors leads to defective multinucleated cell formation. Here we further explore the functions of this RhoGTPase in osteoclasts, using RAW264.7 cells and bone marrow macrophages as osteoclast precursors. Suppression of Wrch1 did not prevent induction of classical osteoclastic markers such as NFATc1, Src, TRAP (Tartrate-Resistant Acid Phosphatase) or cathepsin K. ATP6v0d2 and DC-STAMP, which are essential for fusion, were also expressed normally. Similar to the effect of RANKL, we observed that Wrch1 expression increased osteoclast precursor aggregation and reduced their adhesion onto vitronectin but not onto fibronectin. We further found that Wrch1 could bind integrin ß3 cytoplasmic domain and interfered with adhesion-induced Pyk2 and paxillin phosphorylation. Wrch1 also acted as an inhibitor of M-CSF-induced prefusion osteoclast migration. In mature osteoclasts, high Wrch1 activity inhibited podosome belt formation. Nevertheless, it had no effect on mineralized matrix resorption. Our observations suggest that during osteoclastogenesis, Wrch1 potentially acts through the modulation of αvß3 signaling to regulate osteoclast precursor adhesion and migration and allow fusion. As an essential actor of osteoclast differentiation, the atypical RhoGTPase Wrch1/RhoU could be an interesting target for the development of novel antiresorptive drugs.  相似文献   

20.
In bone development and regeneration, angiogenesis and bone/cartilage resorption are essential processes and are closely associated with each other, suggesting a common mediator for these two biological events. To address this interrelationship, we examined the effect of vascular endothelial growth factor (VEGF), the most critical growth factor for angiogenesis, on osteoclastic bone-resorbing activity in a culture of highly purified rabbit mature osteoclasts. VEGF caused a dose- and time-dependent increase in the area of bone resorption pits excavated by the isolated osteoclasts, partially by enhancing the survival of the cells. Two distinct VEGF receptors, KDR/Flk-1 and Flt-1, were detectable in osteoclasts at the gene and protein levels, and VEGF induced tyrosine phosphorylation of proteins in osteoclasts. Thus, osteoclastic function and angiogenesis are up-regulated by a common mediator such as VEGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号