首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3.  相似文献   

2.
Tackling the epigenome in the pluripotent stem cells   总被引:2,自引:0,他引:2  
Embryonic stem cells are unique in their abilities of self-renewal and to differentiate into many, if not all, cellular lineages. Transcrip- tional regulation, epigenetic modifications and chromatin structures are the key modulators in controlling such pluripotency nature of embryonic stem cell genomes, particularly in the developmental decisions and the maintenance of cell fates. Among them, epigenetic regulation of gene expression is mediated partly by covalent modifications of core histone proteins including methylation, phosphoryla- tion and acetylation. Moreover, the chromatins in stem cell genome appear as a highly organized structure containing distinct functional domains. Recent rapid progress of new technologies enables us to take a global, unbiased and comprehensive view of the epigenetic modifications and chromatin structures that contribute to gene expression regulation and cell identity during diverse developmental stages. Here, we summarized the latest advances made by high throughput approaches in profiling epigenetic modifications and chromatin con- formations, with an emphasis on genome-wide analysis of histone modifications and their implications in pluripotency nature of embry- onic stem cells.  相似文献   

3.
Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Induced pluripotent stem cells (iPSCs) are a promising type of stem cells, comparable to embryonic stem cells (ESCs) in terms of self-renew and pluripotency, generated by reprogramming somatic cells. These cells are an attractive approach to supply patient-specific pluripotent cells, for producing in vitro models of disease, drug discovery, toxicology and potentially treating degenerative disease circumventing immune rejection. In spite of the great advance since iPSCs’ establishment, their obtention and propagation is an increasing area of great interest.In a recent work, we have shown that the conditioned medium from a bovine granulosa cell line (BGC-CM) is able to preserve the basic properties of mESCs. Therefore, based on our previous results and the reported resemblance between iPSCs and ESCs, we hypothesized that BGC-CM could provide a favorable context to culturing iPSCs. In this work, we have reprogrammed mouse embryonic fibroblasts obtaining iPSC lines, and showed that they can be propagated in BGC-CM while maintaining self-renewal and pluripotency, evidenced by expression of specific gene markers and capability of in vitro and in vivo differentiation to cell types from the three germ layers. We believe that these findings may provide a novel context to propagate iPSCs to study the molecular mechanisms involved in self-renewal and pluripotency.  相似文献   

12.
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for self-renewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson’s disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells.  相似文献   

13.
Induced pluripotent stem cells (iPSCs) are obtained from adult cells through overexpression of pluripotency factors. iPSCs share many features with embryonic stem cells (ESCs), circumventing ethical issues, and, noteworthy, match donor's genotype. iPSCs represent therefore a valuable tool for regenerative medicine. Cardiac differentiation of ESCs can be enhanced via microRNAs (miRNAs) and small chemical compounds, which probably act as chromatin remodelers. Cardiomyogenic potential of iPSCs is currently intensely investigated for cell therapy or in vitro drug screening and disease modeling. However, influences of small compounds on iPSC‐related cardiomyogenesis have not yet been investigated in details. Here, we compared the effects of two small molecules, bis‐peroxo‐vanadium (bpV) and sulfonyl‐hydrazone‐1 (SHZ) at varying concentrations, during cardiac differentiation of murine iPSCs. SHZ (5 µM) enhanced specific marker expression and cardiomyocyte yield, without loss of cell viability. In contrast, bpV showed negligible effects on cardiac differentiation rate and appeared to induce Casp3‐dependent apoptosis in differentiating iPSCs. Furthermore, SHZ‐treated iPSCs were able to increase beating foci rate and upregulate early and late cardiomyogenic miRNA expression (miR‐1, miR‐133a, and miR‐208a). Thus, our results demonstrate that small chemical compounds, such as SHZ, can constitute a novel and clinically feasible strategy to improve iPSC‐derived cardiac differentiation. J. Cell. Biochem. 112: 2006–2014, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
Reprogramming of somatic cells to induced pluripotent stem cells(iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects i PSC reprograming,pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification(methylation and acetylation) and DNA modification(methylation) during i PSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally,we discuss how to improve i PSC generation and pluripotency through epigenetic manipulations.  相似文献   

15.
16.
Adult stem cells have a great potential to treat various diseases. For these cell-based therapies, adipose-derived stem cells(ADSCs) are one of the most promising stem cell types, including embryonic stem cells(ESCs) and induced pluripotent stem cells(iPSCs). ESCs and iPSCs have taken center stage due to their pluripotency. However, ESCs and iPSCs have limitations in ethical issues and in identification of characteristics, respectively. Unlike ESCs and iPSCs, ADSCs do not have such limitations and are not only easily obtained but also uniquely expandable. ADSCs can differentiate into adipocytes, osteoblasts, chondrocytes, myocytes and neurons under specific differentiation conditions, and these kinds of differentiation potential of ADSCs could be applied in regenerative medicine e.g., skin reconstruction, bone and cartilage formation, etc. In this review, the current status of ADSC isolation, differentiation and their therapeutic applications are discussed.  相似文献   

17.
Adult stem cells have a great potential to treat various diseases. For these cell-based therapies, adipose-derived stem cells (ADSCs) are one of the most promising stem cell types, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs have taken center stage due to their pluripotency. However, ESCs and iPSCs have limitations in ethical issues and in identification of characteristics, respectively. Unlike ESCs and iPSCs, ADSCs do not have such limitations and are not only easily obtained but also uniquely expandable. ADSCs can differentiate into adipocytes, osteoblasts, chondrocytes, myocytes and neurons under specific differentiation conditions, and these kinds of differentiation potential of ADSCs could be applied in regenerative medicine e.g., skin reconstruction, bone and cartilage formation, etc. In this review, the current status of ADSC isolation, differentiation and their therapeutic applications are discussed.  相似文献   

18.
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号