首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
5.
6.
Mitochondria in stem cells   总被引:2,自引:0,他引:2  
The current status of knowledge about mitochondrial properties in mouse, monkey and human embryonic, adult and precursor stem cells is discussed. Topics include mitochondrial localization patterns, oxygen consumption and ATP content in cells as they relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types. The significance of the perinuclear arrangement of mitochondria, which may be a characteristic feature of stem cells, as well as the expression of mitochondrial DNA regulatory proteins and mutations in the mitochondrial stem cell genome is also discussed.  相似文献   

7.
8.
9.
10.
Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.  相似文献   

11.
12.
13.
目的:定向诱导人胚胎干细胞分化为心肌细胞,对分化过程中胚胎干细胞、心肌祖细胞和心肌细胞糖酵解能力和线粒体氧化磷酸化能力进行实时定量检测,探索分化过程中细胞能量代谢表型的转换机制.方法:用GSK3抑制剂CHIR99021和Wnt信号通路小分子抑制剂IWP2的方法定向分化人胚胎干细胞为心肌祖细胞和心肌细胞;细胞免疫荧光检测人胚胎干细胞标志物,流式细胞术检测人心肌祖细胞和心肌细胞标志物;应用细胞外流量分析(Extracellular Flux Analysis)方法检测人胚胎干细胞、心肌祖细胞和心肌细胞能量代谢情况.结果:人胚胎干细胞干性保持稳定,均表达Nanog、OCT4、SOX2细胞标志物;在向心肌分化过程中,第7d心肌祖细胞标志物Isl1表达99%以上,分化第15d心肌细胞标志物cTnT表达83%以上;人胚胎干细胞糖酵解代谢能力最强,心肌细胞线粒体功能最强,心肌祖细胞处于两种代谢方式的过度阶段.结论:在人胚胎干细胞向心肌细胞分化的过程中,细胞糖酵解能力逐渐减弱,线粒体氧化磷酸化能力逐渐增强,细胞的能量代谢类型发生转变.  相似文献   

14.
15.
16.
17.
Functional variability among human clones of induced pluripotent stem cells (hiPSCs) remains a limitation in assembling high‐quality biorepositories. Beyond inter‐person variability, the root cause of intra‐person variability remains unknown. Mitochondria guide the required transition from oxidative to glycolytic metabolism in nuclear reprogramming. Moreover, mitochondria have their own genome (mitochondrial DNA [mtDNA]). Herein, we performed mtDNA next‐generation sequencing (NGS) on 84 hiPSC clones derived from a cohort of 19 individuals, including mitochondrial and non‐mitochondrial patients. The analysis of mtDNA variants showed that low levels of potentially pathogenic mutations in the original fibroblasts are revealed through nuclear reprogramming, generating mutant hiPSCs with a detrimental effect in their differentiated progeny. Specifically, hiPSC‐derived cardiomyocytes with expanded mtDNA mutations non‐related with any described human disease, showed impaired mitochondrial respiration, being a potential cause of intra‐person hiPSC variability. We propose mtDNA NGS as a new selection criterion to ensure hiPSC quality for drug discovery and regenerative medicine.  相似文献   

18.
Objectives:  Defects of the mitochondrial genome (mtDNA) cause a series of rare, mainly neurological disorders. In addition, they have been implicated in more common forms of movement disorders, dementia and the ageing process. In order to try to model neuronal dysfunction associated with mitochondrial disease, we have attempted to establish a series of trans mitochondrial mouse embryonic stem cells harbouring pathogenic mtDNA mutations.
Materials and methods:  Trans mitochondrial embryonic stem cell cybrids were generated by fusion of cytoplasts carrying a variety of mtDNA mutations, into embryonic stem cells that had been pretreated with rhodamine 6G, to prevent transmission of endogenous mtDNA. Cybrids were differentiated into neurons and assessed for efficiency of differentiation and electrophysiological function.
Results:  Neuronal differentiation could occur, as indicated by expression of neuronal markers. Differentiation was impaired in embryonic stem cells carrying mtDNA mutations that caused severe biochemical deficiency. Electrophysiological tests showed evidence of synaptic activity in differentiated neurons carrying non-pathogenic mtDNA mutations or in those that caused a mild defect of respiratory activity. Again, however, neurons carrying mtDNA mutations that resulted in severe biochemical deficiency had marked reduction in post-synaptic events.
Conclusions:  Differentiated neurons carrying severely pathogenic mtDNA defects can provide a useful model for understanding how such mutations can cause neuronal dysfunction.  相似文献   

19.
Replication of mitochondrial DNA (mtDNA) is dependent on nuclear-encoded factors. It has been proposed that this reliance may exert spatial restrictions on the sites of mtDNA replication within the cytoplasm, as a previous study only detected mtDNA synthesis in perinuclear mitochondria. We have studied mtDNA replication in situ in a variety of human cell cultures labeled with 5-bromo-2'-deoxyuridine. In contrast to what has been reported, mtDNA synthesis was detected at multiple sites throughout the mitochondrial network following short pulses with bromodeoxyuridine. Although no bromodeoxyuridine incorporation was observed in anuclear platelets, incorporation into mtDNA of fibroblasts that had been enucleated 2 h prior to labeling was readily detectable. Blotting experiments indicated that the bromodeoxyuridine incorporation into mtDNA observed in situ represents replication of the entire mtDNA molecule. The studies also showed that replication of mtDNA occurred at any stage of the cell cycle in proliferating cells and continued in postmitotic cells, although at a lower level. These results demonstrate that mtDNA replication is not restricted to mitochondria in the proximity of the nucleus and imply that all components of the replication machinery are available at sufficient levels throughout the mitochondrial network to permit mtDNA replication throughout the cytoplasm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号