首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Quantification of carbon budgets and cycling in Japanese cedar (Cryptomeria japonica D. Don) plantations is essential for understanding forest functions in Japan because these plantations occupy about 20% of the total forested area. We conducted a biometric estimate of net ecosystem production (NEP) in a mature Japanese cedar plantation beneath a flux tower over a 4-year period. Net primary production (NPP) was 7.9 Mg C ha−1 year−1 and consisted mainly of tree biomass increment and aboveground litter production. Respiration was calculated as 6.8 (soil) and 3.3 (root) Mg C ha−1 year−1. Thus, NEP in the plantation was 4.3 Mg C ha−1 year−1. In agreement with the tower-based flux findings, this result suggests that the Japanese cedar plantation was a strong carbon sink. The biometric-based NEP was higher among most other types of Japanese forests studied. Carbon sequestration in the mature plantation was characterized by a larger increment in tree biomass and lower mortality than in natural forests. Land-use change from natural forest to Japanese cedar plantation might, therefore, stimulate carbon sequestration and change the carbon allocation of NPP from an increment in coarse woody debris to an increase in tree biomass.  相似文献   

2.
Alder is a typical species used for forest rehabilitation after disturbances because of its N2-fixing activities through microbes. To investigate forest dynamics of the carbon budget, we determined the aboveground and soil carbon content, carbon input by litterfall to belowground, and soil CO2 efflux over 2 years in 38-year-old alder plantations in central Korea. The estimated aboveground carbon storage and increment were 47.39 Mg C ha−1 and 2.17 Mg C ha−1 year−1. Carbon storage in the organic layer and in mineral soil in the topsoil to 30 cm depth were, respectively, 3.21 and 66.85 Mg C ha−1. Annual carbon input by leaves and total litter in the study stand were, respectively, 1.78 and 2.68 Mg C ha−1 year−1. The aboveground carbon increment at this stand was similar to the annual carbon inputs by total litterfall. The diurnal pattern of soil CO2 efflux was significantly different in May, August, and October, typically varying approximately twofold throughout the course of a day. In the seasonally observed pattern, soil CO2 efflux varied strongly with soil temperature; increasing trends were evident during the early growing season, with sustained high rates from mid May through late October. Soil CO2 efflux was related exponentially to soil temperature (R 2 = 0.85, < 0.0001), but not to soil water content. The Q 10 value for this plantation was 3.8, and annual soil respiration was estimated at 10.2 Mg C ha−1 year−1. An erratum to this article can be found at  相似文献   

3.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

4.
A number of studies have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the altitudinal changes in C storage in different components (vegetation, detritus, and soil) of forest ecosystems remain poorly understood. In this study, we measured C stocks of vegetation, detritus, and soil of 22 forest plots along an altitudinal gradient of 700–2,000 m to quantify altitudinal changes in carbon storage of major forest ecosystems (Pinus koraiensis and broadleaf mixed forest, 700–1,100 m; Picea and Abies forest, 1,100–1,800 m; and Betula ermanii forest, 1,800–2,000 m) on Mt Changbai, Northeast China. Total ecosystem C density (carbon stock per hectare) averaged 237 t C ha−1 (ranging from 112 to 338 t C ha−1) across all the forest stands, of which 153 t C ha−1 (52–245 t C ha−1) was stored in vegetation biomass, 14 t C ha−1 (2.2–48 t C ha−1) in forest detritus (including standing dead trees, fallen trees, and floor material), and 70 t C ha−1 (35–113 t C ha−1) in soil organic matter (1-m depth). Among all the forest types, the lowest vegetation and total C density but the highest soil organic carbon (SOC) density occurred in Betula ermanii forest, whereas the highest detritus C density was observed in Picea and Abies forest. The C density of the three ecosystem components showed distinct altitudinal patterns: with increasing altitude, vegetation C density decreased significantly, detritus C density first increased and then decreased, and SOC density exhibited increasing but insignificant trends. The allocation of total ecosystem C to each component exhibited similar but more significant trends along the altitudinal gradient. Our results suggest that carbon storage and partitioning among different components in temperate forests on Mt Changbai vary greatly with forest type and altitude.  相似文献   

5.
Soil carbon cycling in Japanese cedar plantations after clear-cutting over time was calculated with and without consideration of plantation management (pruning and thinning) using a mathematical model. The model employed a daily time step and used daily air temperature and observed precipitation near the plantations. The results of these calculations of above-ground biomass, carbon flow and accumulation were compared with the field observations reported by Shutou and Nakane (Ecol Res 19:233–244, 2004) observed in the Hiroshima prefecture. For example, the carbon accumulation and total soil respiration rate calculated with the inclusion of plantation management for a 60-year-old stand were 104 and 4.8 t C ha−1year−1, compared with a field observation of 110 and 4.5 t C ha−1year−1, respectively. The results calculated for carbon flow and accumulation were not significantly different from the field observations, assessed using one-way analysis of variance (P > 0.05), and the mean relative errors were very small (e.g., the maximum was 0.05). Consequently, it is suggested that the dynamics of carbon cycling following clear-cutting of a Japanese cedar plantation can be simulated realistically using these calculations with and without consideration of plantation management. Moreover, it is possible that the calculation without consideration of plantation management can yield the change of carbon cycling over time, even if the history of forest management in the plantations is unknown. It is expected that this study will contribute to the development of a more versatile model.  相似文献   

6.
North American prairie pothole wetlands are known to be important carbon stores. As a result there is interest in using wetland restoration and conservation programs to mitigate the effects of increasing greenhouse gas concentration in the atmosphere. However, the same conditions which cause these systems to accumulate organic carbon also produce the conditions under which methanogenesis can occur. As a result prairie pothole wetlands are potential hotspots for methane emissions. We examined change in soil organic carbon density as well as emissions of methane and nitrous oxide in newly restored, long-term restored, and reference wetlands across the Canadian prairies to determine the net GHG mitigation potential associated with wetland restoration. Our results indicate that methane emissions from seasonal, semi-permanent, and permanent prairie pothole wetlands are quite high while nitrous oxide emissions from these sites are fairly low. Increases in soil organic carbon between newly restored and long-term restored wetlands supports the conclusion that restored wetlands sequester organic carbon. Assuming a sequestration duration of 33 years and a return to historical SOC densities we estimate a mean annual sequestration rate for restored wetlands of 2.7 Mg C ha−1year−1 or 9.9 Mg CO2 eq. ha−1 year−1. Even after accounting for increased CH4 emissions associated with restoration our research indicates that wetland restoration would sequester approximately 3.25 Mg CO2 eq. ha−1year−1. This research indicates that widescale restoration of seasonal, semi-permanent, and permanent wetlands in the Canadian prairies could help mitigate GHG emissions in the near term until a more viable long-term solution to increasing atmospheric concentrations of GHGs can be found.  相似文献   

7.
From 1999 to 2003, a range of carbon fluxes was measured and integrated to establish a carbon balance for a natural evergreen forest of Castanopsis kawakamii (NF) and adjacent monoculture evergreen plantations of C. kawakamii (CK) and Chinese fir (Cunninghamia lanceolata, CF) in Sanming Nature Reserve, Fujian, China. Biomass carbon increment of aboveground parts and coarse roots were measured by the allometric method. Above- and belowground litter C inputs were assessed by litter traps and sequential cores, respectively. Soil respiration (SR) was determined by the alkaline absorbance method, and the contribution from roots, above- and belowground litters was separated by the DIRT plots. Annual SR averaged 13.742 t C ha−1 a−1 in the NF, 9.439 t C ha−1 a−1 in the CK, and 4.543 t C ha−1 a−1 in the CF. For all forests, SR generally peaked in later spring or early summer (May or June). The contribution of root respiration ranged from 47.8% in the NF to 40.3% in the CF. On average, soil heterotrophic respiration (HR) was evenly distributed between below- (47.3∼54.5%) and aboveground litter (45.5%–52.7%). Annual C inputs (t C ha−1 a−1) from litterfall and root turnover averaged 4.452 and 4.295, 4.548 and 2.313, and 2.220 and 1.265, respectively, in the NF, CK, and CF. As compared to HR, annual net primary production (NPP) of 11.228, 13.264, and 6.491 t C ha−1 a−1 in the NF, CK, and CF brought a positive net ecosystem production (NEP) of 4.144, 7.514, and 3.677 t C ha−1 a−1, respectively. It suggests that native forest in subtropical China currently acts as an important carbon sink just as the timber plantation does, and converting native forest to tree plantations locally during last decades might have caused a high landscape carbon loss to the atmosphere.  相似文献   

8.
A published meta-analysis of worldwide data showed soil carbon decreasing following land use change from pasture to conifer plantation. A paired site (a native pasture with Themeda triandra dominant, and an adjacent Pinus radiata plantation planted onto the pasture 16 years ago) was set up as a case study to assess the soil carbon reduction and the possible reason for the reduction under pine, including the change in fine root (diameter <2 mm) dynamics (production and mortality). Soil analysis confirmed that soil carbon and nitrogen stocks to 100 cm under the plantation were significantly less than under the pasture by 20 and 15%, respectively. A 36% greater mass of fine root was found in the soil under the pasture than under the plantation and the length of fine root was about nine times greater in the pasture. Much less fine root length was produced and roots died more slowly under the plantation than under the pasture based on observations of fine root dynamics in minirhizotrons. The annual inputs of fine root litter to the top 100 cm soil, estimated from soil coring and minirhizotron observations, were 6.3 Mg dry matter ha−1 year−1 (containing 2.7 Mg C and 38.9 kg N) under the plantation, and 9.7 Mg ha−1 year−1 (containing 3.6 Mg C and 81.4 kg N) under the pasture. The reduced amount of carbon, following afforestation of the pasture, in each depth-layer of the soil profile correlated with the lower length of dead fine roots in the layer under the plantation compared with the pasture. This correlation was consistent with the hypothesis that the soil carbon reduction after land use change from pasture to conifer plantation might be related to change of fine root dynamics, at least in part.  相似文献   

9.
Mangroves have been identified as blue carbon ecosystems that are natural carbon sinks. In Bangladesh, the establishment of mangrove plantations for coastal protection has occurred since the 1960s, but the plantations may also be a sustainable pathway to enhance carbon sequestration, which can help Bangladesh meet its greenhouse gas (GHG) emission reduction targets, contributing to climate change mitigation. As a part of its Nationally Determined Contribution (NDC) under the Paris Agreement 2016, Bangladesh is committed to limiting the GHG emissions through the expansion of mangrove plantations, but the level of carbon removal that could be achieved through the establishment of plantations has not yet been estimated. The mean ecosystem carbon stock of 5–42 years aged (average age: 25.5 years) mangrove plantations was 190.1 (±30.3) Mg C ha−1, with ecosystem carbon stocks varying regionally. The biomass carbon stock was 60.3 (±5.6) Mg C ha−1 and the soil carbon stock was 129.8 (±24.8) Mg C ha−1 in the top 1 m of which 43.9 Mg C ha−1 was added to the soil after plantation establishment. Plantations at age 5 to 42 years achieved 52% of the mean ecosystem carbon stock calculated for the reference site (Sundarbans natural mangroves). Since 1966, the 28,000 ha of established plantations to the east of the Sundarbans have accumulated approximately 76,607 Mg C year−1 sequestration in biomass and 37,542 Mg C year−1 sequestration in soils, totaling 114,149 Mg C year−1. Continuation of the current plantation success rate would sequester an additional 664,850 Mg C by 2030, which is 4.4% of Bangladesh's 2030 GHG reduction target from all sectors described in its NDC, however, plantations for climate change mitigation would be most effective 20 years after establishment. Higher levels of investment in mangrove plantations and higher plantation establishment success could contribute up to 2,098,093 Mg C to blue carbon sequestration and climate change mitigation in Bangladesh by 2030.  相似文献   

10.
Modification of fire regimes in tropical savannas can have significant impacts on the global carbon (C) cycle, and therefore, on the climate system. In Australian tropical savannas, there has been recent, large-scale implementation of fire management that aims to decrease Kyoto-compliant non-CO2 greenhouse gas emissions by reducing late dry season intense fires through strategic early dry season burning. However, there is no accounting for changes to soil C stocks resulting from changes to savanna fire management, although impacts on these pools may be considerable. We present a hypothesis that soil C storage is greatest under low intensity fires with an intermediate fire return interval. Simulations using the CENTURY Soil Organic Matter Model confirmed this hypothesis with greatest soil C storage under a fire regime of one low intensity fire every 5 years. Key areas of uncertainty for CENTURY model simulations include fine root dynamics, charcoal production and nitrogen (N) cycling, and better understanding of these processes could improve model predictions. Soil C stocks measured in the field after 5 years of annual, 3 year and unburned fire treatments were not significantly different (range 41–58 t ha−1), but further CENTURY modelling suggests that changes in fire management will take up to 100 years to have a detectable impact (+4 t ha−1) on soil C stocks. However, implementation of fire management that reduces fire frequency and intensity within the large area of intact savanna landscapes in northern Australia could result in emissions savings of 0.17 t CO2-e ha−1 y−1, four times greater than reductions of non-CO2 emissions.  相似文献   

11.
The present study was undertaken in seven major forest types of temperate zone (1500 m a.s.l. to 3100 m a.s.l.) of Garhwal Himalaya to understand the effect of slope aspects on carbon (C) density and make recommendations for forest management based on priorities for C conservation/sequestration. We assessed soil organic carbon (SOC) density, tree density, biomass and soil organic carbon (SOC) on four aspects, viz. north-east (NE), north-west (NW), south-east (SE) and south-west (SW), in forest stands dominated by Abies pindrow, Cedrus deodara, Pinus roxburghii, Cupressus torulosa, Quercus floribunda, Quercus semecarpifolia and Quercus leucotrichophora. TCD ranged between 77.3 CMg ha−1 on SE aspect (Quercus leucotrichophora forest) and 291.6 CMg ha−1 on NE aspect (moist Cedrus deodara forest). SOC varied between 40.3 CMg ha−1 on SW aspect (Himalayan Pinus roxburghii forest) and 177.5 CMg ha−1 on NE aspect (moist Cedrus deodara forest). Total C density (SOC + TCD) ranged between 118.1 CMg ha−1 on SW aspect (Himalayan Pinus roxburghii forest) and 469.1 CMg ha−1 on NE aspect (moist Cedrus deodara forest). SOC and TCD were significantly higher on northern aspects as compared with southern aspects. It is recommended that for C sequestration, the plantation silviculture be exercised on northern aspects, and for C conservation purposes, mature forest stands growing on northern aspects be given priority.  相似文献   

12.
In a lowland drinking water catchment area, nitrate leaching as well as groundwater recharge (GWR) was investigated in willow and poplar short rotation coppice (SRC) plantations of different ages, soil preparation measures prior to planting and harvesting intervals. Significantly increased nitrate concentrations of 16.6 ± 1.6 mg NO3-N L−1 were measured in winter/spring 2010 on a poplar site, established in 2009 after deep plowing (90 cm) but then, subsequently decreased strongly to below 2 mg NO3-N L−1 in spring 2011. The fallow ground reference plot showed nitrate concentrations consistently below 1 mg L−1 and estimated annual seepage output loss was only 1.36 ± 1.1 kg ha−1 a−1. Leaching loss from a neighboring willow plot from 2005 was 14.3 ± 6.6 kg NO3-N ha−1 during spring 2010 but decreased to 2.0 ± 1.5 kg NO3-N ha−1 during the subsequent drainage period. A second willow plot, not harvested since its establishment in 1994, showed continuously higher nitrate concentrations (10.2 ± 1.7 NO3-N L−1), while a neighboring poplar plot, twice harvested since 1994 showed significantly reduced nitrate concentrations. Water balance simulations, referenced by soil water tension and throughfall measurements, showed that at 655 mm annual rainfall, GWR from the reference plot (300 mm a−1) was reduced by 40 % (to 180 mm a−1) on the 2005 willow stand, mainly due to doubled rainfall interception losses. However, transpiration was limited by low soil water storage capacities, which in turn led to a moderate impact on GWR. We conclude that well-managed SRC on sensitive areas can prevent nitrate leaching, while impacts on GWR may be mitigated by management options.  相似文献   

13.
Land-use changes such as deforestation have been considered one of the main contributors to increased greenhouse gas emissions, while verifiable C sequestration through afforestation projects is eligible to receive C credits under the Kyoto Protocol. We studied the short-term effects on CO2 emissions of converting agricultural land-use (planted to barley) to a hybrid poplar (Populus deltoids × Populus × petrowskyana var. Walker) plantation in the Parkland region in northern Alberta, where large areas are being planted to hybrid poplars. CO2 emissions were measured using a static gas chamber method. No differences were found in soil temperature, volumetric moisture content, or soil respiration rates between the barley and Walker plots. The mean soil respiration rate in 2005 was 1.83 ± 0.19 (mean ± 1 SE) and 1.89 ± 0.13 μmol CO2 m−2 s−1 in the barley and Walker plots, respectively. However, biomass production was higher in the barley plots, indicating that the agricultural land-use system had a greater ability to fix atmospheric CO2. The C balance in the land-use systems were estimated to be a small net gain (before considering straw and grain removal through harvesting) of 0.03 ± 0.187 Mg C ha−1 year−1 in the barley plots and a net loss of 3.35 ± 0.080 Mg C ha−1 year−1 from the Walker poplar plots. Over the long-term, we expect the hybrid poplar plantation to become a net C sink as the trees grow bigger and net primary productivity increases.  相似文献   

14.
Biochar soil amendment (BSA) had been advocated as a promising approach to mitigate greenhouse gas (GHG) emissions in agriculture. However, the net GHG mitigation potential of BSA remained unquantified with regard to the manufacturing process and field application. Carbon footprint (CF) was employed to assess the mitigating potential of BSA by estimating all the direct and indirect GHG emissions in the full life cycles of crop production including production and field application of biochar. Data were obtained from 7 sites (4 sites for paddy rice production and 3 sites for maize production) under a single BSA at 20 t/ha?1 across mainland China. Considering soil organic carbon (SOC) sequestration and GHG emission reduction from syngas recycling, BSA reduced the CFs by 20.37–41.29 t carbon dioxide equivalent ha?1 (CO2‐eq ha?1) and 28.58–39.49 t CO2‐eq ha?1 for paddy rice and maize production, respectively, compared to no biochar application. Without considering SOC sequestration and syngas recycling, the net CF change by BSA was in a range of ?25.06 to 9.82 t CO2‐eq ha?1 and ?20.07 to 5.95 t CO2‐eq ha?1 for paddy rice and maize production, respectively, over no biochar application. As the largest contributors among the others, syngas recycling in the process of biochar manufacture contributed by 47% to total CF reductions under BSA for rice cultivation while SOC sequestration contributed by 57% for maize cultivation. There was a large variability of the CF reductions across the studied sites whether in paddy rice or maize production, due likely to the difference in GHG emission reductions and SOC increments under BSA across the sites. This study emphasized that SOC sequestration should be taken into account the CF calculation of BSA. Improved biochar manufacturing technique could achieve a remarkable carbon sink by recycling the biogas for traditional fossil‐fuel replacement.  相似文献   

15.
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.  相似文献   

16.
Tree species and wood ash application in plantations of short-rotation woody crops (SRWC) may have important effects on the soil productive capacity through their influence on soil organic matter (SOM) and exchangeable cations. An experiment was conducted to assess changes in soil C and N contents and pH within the 0–50 cm depth, and exchangeable cation (Ca2+, Mg2+, K+, and Na+) and extractable acidity concentrations within the 0–10 cm depth. The effects of different species (European larch [Larix decidua P. Mill.], aspen [Populus tremula L. × Populus tremuloides Michx.], and four poplar [Populus spp.] clones) and wood ash applications (0, 9, and 18 Mg ha−1) on soil properties were evaluated, using a common garden experiment (N = 70 stands) over 7 years of management in Michigan’s Upper Peninsula. Soils were of the Onaway series (fine-loamy, mixed, active, frigid Inceptic Hapludalfs). The NM-6 poplar clone had the greatest soil C and N contents in almost all ash treatment levels. Soil C contents were 7.5, 19.4, and 10.7 Mg C ha−1 greater under the NM-6 poplar than under larch in the ash-free, medium-, and high-level plots, respectively. Within the surface layer, ash application increased soil C and N contents (P < 0.05) through the addition of about 0.7 Mg C ha−1 and 3 kg N ha−1 with the 9 Mg ha−1 ash application (twofold greater C and N amounts were added with the 18 Mg ha−1 application). During a decadal time scale, tree species had no effects—except for K+—on the concentrations of the exchangeable cations, pH, and extractable acidity. In contrast, ash application increased soil pH and the concentration of Ca2+ (P < 0.05), from 5.2 ± 0.4 cmolc kg−1 (ash-free plots) to 8.6 ± 0.4 cmolc kg−1 (high-level ash plots), and tended to increase the concentration of Mg2+ (P < 0.1), while extractable acidity was reduced (P < 0.05) from 5.6 ± 0.2 cmolc kg−1 (ash-free plots) to 3.7 ± 0.2 cmolc kg−1 (high-level plots). Wood ash application, within certain limits, not only had a beneficial effect on soil properties important to the long-term productivity of fast-growing plantations but also enhanced long-term soil C sequestration.  相似文献   

17.
Desertification land in Gonghe Basin of Tibetan Plateau, China accounts for 91.9% of the total land area. Vegetation restoration and reconstruction with desert shrubs in degraded ecosystem are effective ways to prevent and control desertification. However, the evaluation studies of fine root dynamic characteristics of desert shrubs and their contribution to carbon sequestration of plantation are limited. To gain a better understanding of vegetation restoration, the vertical distribution of fine root biomass, fine root decomposition, fine root turnover was investigated, as well as their coupling effect on carbon sequestration of plantation in three desert vegetation. The results estimated that the total decomposition time of fine roots of Salix cheilophila (S. cheilophila), Salix psammophila (S. psammophila), and Salix microstachya (S. microstachya) are 39.00, 27.99 and 35.95 years. Biomass carbon density for three Salix plantations ranged from 1.42 to 2.39 t/hm2, which showed that three Salix plantations in alpine sandy land are an important carbon pool. In addition, fine root biomass carbon density for the three shrub plantations varied significantly. Fine root biomass carbon density for S. psammophila reached the largest among the three plantations, which was 1.48 t/hm2, accounting for the ratio of 62% of the plantation total biomass carbon density. The results indicated that the root system of S. psammophila, especially the fine roots, was very developed, which was conducive to soil water transportation and carbon sequestration. Therefore, S. psammophila might be a better species for carbon sequestration of plantation in alpine sandy areas. The carbon input from the fine roots of the three shrub plantations through decomposition and turnover into the plantations accounts for 11.5% to 15.5% of total carbon sequestration of plantations. Therefore, the fine roots dynamics must be considered for long‐term carbon pool estimations in three Salix plantations, otherwise the total carbon sequestration of plantations would be underestimated.  相似文献   

18.
The aim of this study was to quantify the effects of fertiliser N on C stocks in trees (stems, stumps, branches, needles, and coarse roots) and soils (organic layer +0–10 cm mineral soil) by analysing data from 15 long-term (14–30 years) experiments in Picea abies and Pinus sylvestris stands in Sweden and Finland. Low application rates (30–50 kg N ha−1 year−1) were always more efficient per unit of N than high application rates (50–200 kg N ha−1 year−1). Addition of a cumulative amount of N of 600–1800 kg N ha−1 resulted in a mean increase in tree and soil C stock of 25 and 11 kg (C sequestered) kg−1 (N added) (“N-use efficiency”), respectively. The corresponding estimates for NPK addition were 38 and 11 kg (C) kg−1 (N). N-use efficiency for C sequestration in trees strongly depended on soil N status and increased from close to zero at C/N 25 in the humus layer up to 40 kg (C) kg−1 (N) at C/N 35 and decreased again to about 20 kg (C) kg−1 (N) at C/N 50 when N only was added. In contrast, addition of NPK resulted in high (40–50 kg (C) kg−1 (N)) N-use efficiency also at N-rich (C/N 25) sites. The great difference in N-use efficiency between addition of NPK and N at N-rich sites reflects a limitation of P and K for tree growth at these sites. N-use efficiency for soil organic carbon (SOC) sequestration was, on average, 3–4 times lower than for tree C sequestration. However, SOC sequestration was about twice as high at P. abies as at P. sylvestris sites and averaged 13 and 7 kg (C) kg−1 (N), respectively. The strong relation between N-use efficiency and humus C/N ratio was used to evaluate the impact of N deposition on C sequestration. The data imply that the 10 kg N ha−1 year−1 higher deposition in southern Sweden than in northern Sweden for a whole century should have resulted in 2.0 ± 1.0 (95% confidence interval) kg m−2 more tree C and 1.3 ± 0.5 kg m−2 more SOC at P. abies sites in the south than in the north for a 100-year period. These estimates are consistent with differences between south and north in tree C and SOC found by other studies, and 70–80% of the difference in SOC can be explained by different N deposition.  相似文献   

19.
The area of forest established through afforestation/reforestation has been increasing on a global scale, which is particularly important as these planted forests attenuate climate change by sequestering carbon. However, the determinants of soil organic carbon (SOC) sequestration and their contribution to the ecosystem carbon sink of planted forests remain uncertain. By using globally distributed data extracted from 154 peer‐reviewed publications and a total of 355 sampling points, we investigated above‐ground biomass carbon (ABC) sequestration and SOC sequestration across three different climatic zones (tropical, warm temperate, and cold temperate) through correlation analysis, regression models, and structural equation modeling (SEM). We found that the proportion of SOC sequestration in the ecosystem C sequestration averaged 14.1% globally, being the highest (27.0%) in the warm temperate and the lowest (10.7%) in the tropical climatic zones. The proportion was mainly affected by latitude. The sink rate of ABC (RABC) in tropical climates (2.48 Mg C ha?1 year?1) and the sink rate of SOC (RSOC) in warm temperate climates (0.96 Mg C ha?1 year?1) were higher than other climatic zones. The main determinants of RSOC were the number of frost‐free days, latitude, mean annual precipitation (MAP), and SOC density (SOCD) at the initial observation; however, these variables depended on the climatic zone. According to the SEM, frost‐free period, mean annual temperature (MAT) and MAP are the dominant driving factors affecting RSOC in Chinese plantations. MAT has a positive effect on RSOC, and global warming may increase RSOC of temperate plantations in China. Our findings highlight the determinants of SOC sequestration and quantitatively reveal the substantial global contribution of SOC sequestration to ecosystem carbon sink provided by planted forests. Our results help managers identify and control key factors to increase carbon sequestration in forest ecosystems.  相似文献   

20.
连作杨树人工林细根寿命的代际差异及其影响因素   总被引:1,自引:0,他引:1  
细根寿命是调控森林生产力形成的关键。通过在连作Ⅰ、Ⅱ代杨树人工林固定样地内埋设微根管,对杨树不同根序细根年度生长动态开展连续观测并进行生存分析。结果表明,杨树不同根序细根累积生存率存在显著差异,高级根(3—5级)寿命较长,其累积生存率显著高于1级和2级细根。杨树细根寿命存在显著的代际差异,连作Ⅱ代人工林活根量、死根量和细根总量均高于Ⅰ代林。连作Ⅱ代人工林细根中位值寿命为(90±16)d,显著低于Ⅰ代人工林((102±22)d)。连作Ⅱ代林各根序细根数量、分布比例均高于Ⅰ代林,低级细根累积生存率低于Ⅰ代林而高级细根累积生存率显著高于Ⅰ代林。连作杨树人工林细根寿命显著受制于土壤环境,1级细根寿命与土壤速效氮相关性极显著(r=-0.861),2级细根寿命与土壤物理性状相关性较强且与土壤酚酸含量呈现极显著相关(r=0.870),高级根序细根寿命与土壤物理性质和养分状况等也具有一定相关性。连作杨树人工林土壤酚酸累积和养分有效性下降影响了细根寿命和周转,并进而造成净初级生产力损耗,相关结论为连作杨树人工林生产力衰退机理模型的建立提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号