首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the environmental factors shaping savannah and tropical forest boundaries is important to predict tropical vegetation responses to climate change and other human-mediated disturbances. To better understand the soil characteristics affecting the distribution of Cerradão (Brazilian woodland savannah) and seasonally dry forest (SDF), two vegetation types occurring next to each other in a similar seasonal climate in south-eastern Brazil, we compared several leaf chemical and morphological traits associated with soil pH and resource availability of Cerradão and SDF woody species. Leaf functional traits were measured for 25 Cerradão and 27 SDF species. We performed between-site comparisons with either all species pooled using phylogenetically independent contrasts or species shared between Cerradão and SDF, as well as congeneric pairs. We found higher specific leaf area and leaf nitrogen, potassium, calcium and sulfur concentrations for SDF species. We did not find higher concentrations for leaf phosphorus and manganese (Mn) for SDF species, despite a higher concentration of these nutrients in SDF soil. Cerradão plants had higher leaf iron (Fe), Mn and aluminium (Al) concentrations. For most of the traits assessed, variance was higher among species and genera than between sites. Nutrients with greater availability in the SDF soil did not invariably exhibit higher concentrations in the leaves of SDF species, indicating that these were not limiting for plant productivity. Higher concentrations in the leaves of Cerradão species for Al, Fe and Mn are probably a consequence of lower soil pH, which increases the availability of these elements. In spite of the differences in belowground resources and the divergence for some traits between Cerradão and SDF, our results show high diversity in leaf functional traits within communities and a similarity of leaf functional traits in closely related species in the contrasting habitats. Besides, we surmise that soil pH is an important factor affecting Cerradão and SDF species distribution, excluding SDF species from more acidic soils, because of the toxic effects of Al, and possibly also Mn and Fe.  相似文献   

2.

Background and aims

Soils can act as agents of natural selection, causing differential fitness among genotypes and/or families of the same plant species, especially when soils have extreme physical or chemical properties. More subtle changes in soils, such as variation in microbial communities, may also act as agents of selection. We hypothesized that variation in soil properties within a single river drainage can be a selective gradient, driving local adaptation in plants.

Methods

Using seeds collected from individual genotypes of Populus angustifolia James and soils collected from underneath the same trees, we use a reciprocal transplant design to test whether seedlings would be locally adapted to their parental soil type.

Results

We found three patterns: 1. Soils from beneath individual genotypes varied in pH, soil texture, nutrient content, microbial biomass and the physiological status of microorganisms. 2. Seedlings grown in local soils experienced 2.5-fold greater survival than seedlings planted in non-local soils. 3. Using a composite of height, number of leaves and leaf area to measure plant growth, seedlings grew ~17.5% larger in their local soil than in non-local soil.

Conclusions

These data support the hypothesis that variation in soils across subtle gradients can act as an important selective agent, causing differential fitness and local adaptation in plants.  相似文献   

3.
4.

Aims

We examined the importance of partial seed consumption (cotyledon loss) by rabbits in the early establishment of seedlings of cork oaks restricted to nutrient-impoverished soils.

Methods

To determine the importance of cotyledons in the growth and development of seedlings, we simulated two levels of predation [light (30 % cotyledon loss) and heavy (60 % loss) partial consumption] and two soil nutrient contents (nutrient-poor soil, nutrient-rich soil). Seedlings height, root length, dry root and shoot biomass, specific leaf mass, leaf density, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations were determined.

Results

Results indicated that effect of nutrient level on the growth of the oak seedlings was more important than that of cotyledon biomass. However, in nutrient–poor soils, cotyledon biomass played a major role in the early performance of cork oaks. Acorns grown in nutrient-rich substrate, despite having greater aerial vigor, were slower to develop a vertical root, and hence less likely to reach permanent moisture. Cotyledon loss caused a decrease in the biomass of roots and shoots when acorns were heavily consumed, and as a result experienced a reduction in net photosynthetic rate, stomatal conductance and chlorophyll concentration. Survival of seedlings was unaffected by either soil type or cotyledon loss.

Conclusions

Our results show that effects of soil type on the survival of oak seedlings were more important than those of cotyledon biomass. However, in a competitive situation, cotyledon biomass, as an indicative of growth nutrient support rather than an energy source, could be vital in a nutrient-poor environment, particularly in Mediterranean climate regions and for species with little inherent drought tolerance (as is the case of Quercus spp.), where rapid root growth is required to ensure that contact with soil moisture is maintained over the first summer.  相似文献   

5.

Aims

Nutrients play a key role in arbuscular mycorrhizal (AM) symbiosis. We quantified the response of AM symbiosis of seedlings and adult plants of Plantago lanceolata to fertilization under field conditions in managed grasslands differing in nutrient availability and soil moisture.

Methods

The AM symbiosis was measured as the total extent of AM fungal colonization and frequency of arbuscules or vesicles, and as the relative proportions of morphotypes. We further examined the effects of the surrounding vegetation upon AM symbiosis.

Results

Fertilization decreased total AM colonization and relative arbuscular frequency of the whole mycorrhizal community and of Acaulospora and “fine endophyte” morphotypes in seedling roots, but it had no effect upon the mycorrhiza in adult plants. The decline in arbuscular frequency in seedling roots due to fertilization was greater at the sites with higher nutrient availability and lower N:P ratio. Seedlings surrounded by more forbs had a greater total AM colonization and higher vesicular frequency.

Conclusions

Increased nutrient availability in the initial stages of seedling development has a prominent effect upon AM symbiosis development, but these effects seem to diminish over the long term, as evidenced by the results obtained for adult plants and from the limited effects of parameters characterizing long-term nutrient availability.  相似文献   

6.

Key message

Outplanted Polylepis australis seedling growth, survival and mycorrhizal response were not influenced by inoculation with soil from different vegetation types. Seedling inoculation would not be essential for reforestation practices.

Abstract

Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been recommended. To determine whether native soil inoculation could help in reforestation success, a field trial was set up to evaluate the response of outplanted P. australis seedlings to the inoculation with soils from three vegetation types (a grassland, a mature forest and a degraded forest) and a sterile soil, used as control. We evaluated seedlings performance: growth and survival for 18 months, root/shoot ratio, phosphorous content and arbuscular mycorrhizal fungal (AMF) colonization. To interpret performance patterns we evaluated the colonization potential of the three inoculum soils and the changes of the AMF community composition of the seedlings rhizosphere in relation to inoculation treatment and season. Our main results showed no significant differences in seedlings survival and growth between treatments. The colonization potential of grassland and degraded forest soils was ~25 times greater than mature forest soil and specific spore density of some morphospecies varied with season. However, AMF spore community of seedlings rhizosphere became homogenized after outplanting and was similar between treatments after 12 months. Therefore, we conclude that soil inoculation is not essential for outplanted P. australis survival and increase in height, and thus all the tested soils could be used as inocula, including grassland soils which in practice are the easiest to collect.  相似文献   

7.

Aims

Longleaf pine (Pinus palustris Mill.) is being restored across the U.S. South for a multitude of ecological and economic reasons, but our understanding of longleaf pine’s response to soil physical conditions is poor. On the contrary, our understanding of loblolly pine (Pinus taeda L.) root and shoot growth response to soil conditions is well established.

Methods

We performed a comparative greenhouse study which modeled root length density, total seedling biomass, and the ratio of aboveground:belowground mass as functions of volumetric water content, bulk density and soil fertility (fertilized or not).

Results

Root length density was about 35 % greater in longleaf pine seedlings compared to loblolly pine seedlings, and was reasonably well modeled (R 2?=?0.54) for longleaf pine by bulk density (linear), volumetric water content (quadratic), soil fertility, and the interactions of bulk density, volumetric water content, species, and soil fertility. The aboveground:belowground mass ratio (ABR) increased at both extremes of water content.

Conclusions

This research indicates that young longleaf pine seedling root systems respond more negatively to extremes of soil physical conditions than loblolly pine, and compacted or dry loamy soils should be ameliorated in addition to normal competition control, especially on soils degraded by past management.  相似文献   

8.

Background and aims

The relationship between tree species and soil nutrient availability is critical for evaluating plantation succession and promoting forest restoration. This study was conducted to evaluate the impact of exotic and native tress species on soil nutrient availability.

Methods

Four exotic species (Eucalyptus urophylla, E. tereticornis, Acaia auriculaeformis, A. mangium) and four native species (Castanopsis fissa, Schima superba, C. hystrix, Michelia macclurei) were planted and grown for one-year. Soil solution (DOC, DON, NH4?N, NO3?N) was sampled and analyzed during the study. After the experiment, soil properties were determined, and plant tissues were analyzed.

Results

DOC levels were greater in soils with trees planted than controls without trees. Compared to native species, exotic species had much faster growth rates and greatly reduced DON and NO3?N concentrations. Exotic species always had less P concentrations in leaves and stems than native species. Furthermore, N-fixing A. auriculaeformis led to greater soil available P compared to other species.

Conclusions

Based on these findings, we provide some recommendations for afforestation practice. This study highlights that a better understanding of the pros and cons of exotic species would be beneficial to advance afforestation in China and the world.  相似文献   

9.

Aims

Plants with precise root foraging patterns can proliferate roots preferentially in nutrient-rich soil patches. When nutrients are distributed heterogeneously, this trait is often competitively advantageous in pot experiments but not field experiments. We hypothesized that this difference is due to belowground herbivory under field conditions.

Methods

We performed pot experiments using seedlings of Lolium perenne (a more precise root foraging species) and Plantago lanceolata (a less precise root foraging species). The experiment had a two-way factorial randomized block design, with nutrient distribution pattern (homogeneous or heterogeneous) and belowground herbivore (present or absent) as the two factors. Each pot contained one seedling of each species.

Results

With no herbivore present, plant biomass was smaller in the heterogeneous nutrient treatment than in the homogeneous treatment in P. lanceolata, but not in L. perenne. Under homogeneous nutrient distribution, plant biomass was lower in both species with a herbivore present than with no herbivore. Under heterogeneous nutrient distribution, biomass reduction due to herbivory occurred only in L. perenne.

Conclusions

Roots of the precise root foraging species were grazed more under the heterogeneous nutrient distribution, suggesting that the herbivore more efficiently foraged for roots in nutrient-rich soil patches.  相似文献   

10.

Key message

Seedlings of three Fagaceae species planted on acidic, infertile colluvial soil showed accelerated growth when inoculated with ectomycorrhizal fungi.

Abstract

We conducted a study with seedlings of Fagaceae species inoculated with ectomycorrhizal fungi to estimate their utility for growth in acidic soil conditions. We selected Quercus glauca, Quercus salicina and Castanopsis cuspidata as typical evergreen, broad-leaved, woody species of southwestern Japan. Seedlings were inoculated with Astraeus hygrometricus or Scleroderma citrinum, and planted in acidic, infertile colluvial soil collected from an abandoned site. Six months after planting, seedlings of the three species inoculated with A. hygrometricus were growing well, especially, Q. salicina. The growth of seedlings inoculated with S. citrinum was inferior to seedlings inoculated with A. hygrometricus. In contrast, seedlings without ectomycorrhizal fungi did not grow well. Differences in growth among the three types of seedlings were related to differences in the levels of nutrient acquisition. We concluded that Fagaceae seedlings inoculated with A. hygrometricus were best suited for acidic, infertile environments.  相似文献   

11.

Background and aims

Long-term use of copper (Cu) based fungicides has accelerated Cu contamination in soils and subsequently its export to the environment. Field trials were conducted in representative commercial citrus groves in the Indian River area, South Florida to evaluate the effectiveness of calcium water treatment residue (Ca-WTR) for stabilizing Cu in soil and its subsequent influence on Cu loading in surface runoff and citrus growth.

Methods

Soil and surface runoff samples were monitored over a 3-year period on two field sites under navel orange and Ruby Red grapefruit production.

Results

Soil amendment with Ca-WTR generally raised soil pH and soil available Ca, but decreased available Cu. The mean concentrations of Cu in surface runoff water were reduced by 36 % and 28 % for the navel orange and grapefruit site, respectively. The results of species distribution of Cu in the runoff water using MINTEQ indicated that the application of Ca-WTR decreased the concentrations of free Cu2+ by 61 % and 39 % for the two sites. Fruit quality and yields were improved, because of the improved nutrient availability and other soil conditions.

Conclusions

The results indicate that in situ application of Ca-WTR may provide a cost-effective remediation method for the Cu-contaminated soils without affecting citrus production.  相似文献   

12.

Background and aims

Phenological variations in tropical forests are usually explained by climate. Nevertheless, considering that soil water availability and nutrient content also influence plant water status and metabolism, soil conditions may also be important in the regulation of plant reproductive and vegetative activities over time. We investigated whether phenological patterns and stem growth differ in trees growing in two types of soil that display contrasting water and nutrient availability, namely, Gleysol (moist and nutrient-poor) and Cambisol (drier and nutrient-rich).

Methods

Phenological observations (flushing, leaf fall, flowering and fruiting) and stem diameter growth were recorded for 120 trees fitted with fixed dendrometer bands, at 15 days intervals, for 1 year. Two species of contrasting deciduousness were investigated: Senna multijuga (semi-deciduous) and Citharexylum myrianthum (deciduous).

Results

Both species were seasonal in all phenophases, regardless of soil type. However, frequency, mean date and intensity of phenophases varied according to soil type. Girth increment of C. myrianthum was four times greater in Cambisol than in Gleysol, whereas the type of soil had no significant effect on that of S. multijuga.

Conclusions

These results show that soil characteristics also play an important role in determining phenological patterns and growth and must be considered when analysing phenological patterns in tropical forests.  相似文献   

13.

Background and aims

The rhizosphere, the soil immediately surrounding roots, provides a critical bridge for water and nutrient uptake. The rhizosphere is influenced by various forms of root–soil interactions of which mechanical deformation due to root growth and its effects on the hydraulics of the rhizosphere are the least studied. In this work, we focus on developing new experimental and numerical tools to assess these changes.

Methods

This study combines X-ray micro-tomography (XMT) with coupled numerical simulation of fluid and soil deformation in the rhizosphere. The study provides a new set of tools to mechanistically investigate root-induced rhizosphere compaction and its effect on root water uptake. The numerical simulator was tested on highly deformable soil to document its ability to handle a large degree of strain.

Results

Our experimental results indicate that measured rhizosphere compaction by roots via localized soil compaction increased the simulated water flow to the roots by 27 % as compared to an uncompacted fine-textured soil of low bulk density characteristic of seed beds or forest topsoils. This increased water flow primarily occurred due to local deformation of the soil aggregates as seen in the XMT images, which increased hydraulic conductivity of the soil. Further simulated root growth and deformation beyond that observed in the XMT images led to water uptake enhancement of ~50 % beyond that due to root diameter increase alone and demonstrated the positive benefits of root compaction in low density soils.

Conclusions

The development of numerical models to quantify the coupling of root driven compaction and fluid flow provides new tools to improve the understanding of plant water uptake, nutrient availability and agricultural efficiency. This study demonstrated that plants, particularly during early growth in highly deformable low density soils, are involved in active mechanical management of their surroundings. These modeling approaches may now be used to quantify compaction and root growth impacts in a wide range of soils.  相似文献   

14.
Role of microRNAs in plant responses to nutrient stress   总被引:1,自引:0,他引:1  
  相似文献   

15.

Background and aims

Soil pH is among the major environmental factors affecting plant growth. Although the optimum range of soil pH for growth and the tolerance of pH extremes widely vary among plant species, the pH tolerance mechanisms in plants are still poorly understood. In this study, possible mechanisms were examined to explain the differences in tolerance of boreal plants to root zone pH.

Methods

In the controlled-environment solution culture experiments, we compared growth, physiological parameters and tissue nutrient concentrations in aspen, white spruce and tamarack seedlings that were subjected to 8 weeks of root zone pH treatments ranging from 5.0 to 9.0.

Results

The pH treatments had little effect on dry weights and net photosynthesis in white spruce seedlings despite reductions in transpiration rates at higher pH levels. In aspen and tamarack, both the growth and physiological parameters significantly decreased at pH higher than 6.0. The chlorosis of young tissues in aspen and tamarack was associated with the reductions in foliar concentrations of several of the examined essential nutrients including Fe and Mn. Although the plants varied in their ability to deliver essential nutrients to growing leaves, there was no direct correlation between tissue nutrient concentrations, chlorophyll concentrations and plant growth. The results also demonstrated strong inhibition of transpiration rates by high pH.

Conclusions

The results suggest that high root zone pH can upset water balance in pH sensitive species including aspen. Although the uptake and assimilation of essential elements such as Fe and Mn contribute to plant tolerance of high soil pH, we did not observe a direct relationship between growth and foliar nutrient concentrations to account for the observed differences in growth.  相似文献   

16.

Background and aims

Tundra soils, which usually contain low concentrations of soil nutrients and have a low pH, store a large proportion of the global soil carbon (C) pool. The importance of soil nitrogen (N) availability for microbial activity in the tundra has received a great deal of attention; however, although soil pH is known to exert a considerable impact on microbial activities across ecosystems, the importance of soil pH in the tundra has not been experimentally investigated.

Methods

We tested a hypothesis that low nutrient availability and pH may limit microbial biomass and microbial capacity for organic matter degradation in acidic tundra heaths by analyzing potential extracellular enzyme activities and microbial biomass after 6 years of factorial treatments of fertilization and liming.

Results

Increasing nutrients enhanced the potential activity of β-glucosidase (synthesized for cellulose degradation). Increasing soil pH, in contrast, reduced the potential activity of β-glucosidase. The soil phospholipid fatty acid concentrations (PLFAs; indicative of the amount of microbial biomass) increased in response to fertilization but were not influenced by liming.

Conclusions

Our results show that soil nutrient availability and pH together control extracellular enzyme activities but with largely differing or even opposing effects. When nutrient limitation was alleviated by fertilization, microbial biomass and enzymatic capacity for cellulose decomposition increased, which likely facilitates greater decomposition of soil organic matter. Increased soil pH, in contrast, reduced enzymatic capacity for cellulose decomposition, which could be related with the bioavailability of organic substrates.  相似文献   

17.

Background and aims

Soil microbial responses to global change can affect organic matter turnover and nutrient cycling thereby altering the overall ecosystem functioning. In a large-scale experiment, we investigated the impact of 5 years of climate change and elevated atmospheric CO2 on soil microorganisms and nutrient availability in a temperate heathland.

Methods

The future climate was simulated by increased soil temperature (+0.3 °C), extended pre-summer drought (excluding 5–8 % of the annual precipitation) and elevated CO2 (+130 ppm) in a factorial design. Soil organic matter and nutrient pools were analysed and linked to microbial measures by quantitative PCR of bacteria and fungi, chloroform fumigation extraction, and substrate-induced respiration to assess their impact of climate change on nutrient availability.

Results

Warming resulted in higher measures of fungi and bacteria, of microbial biomass and of microbial growth potential, however, this did not reduce the availability of nitrogen or phosphorus in the soil. Elevated CO2 did not directly affect the microbial measures or nutrient pools, whereas drought shifted the microbial community towards a higher fungal dominance.

Conclusions

Although we were not able to show strong interactive effects of the global change factors, warming and drought changed both nutrient availability and microbial community composition in the heathland soil, which could alter the ecosystem carbon and nutrient flow in the long-term.  相似文献   

18.

Key message

Arabidopsis Ca 2+ -ATPase ACA8 plays a role in sucrose signalling during early seedling development by integrating developmental signals with carbon source availability.

Abstract

Calcium (Ca2+) is an essential signal transduction element in eukaryotic organisms. Changes in the levels of intracellular Ca2+ affect multiple developmental processes in plants, including cell division, polar growth, and organogenesis. Here, we report that the plasma-membrane-localised Arabidopsis Ca2+-ATPase ACA8 plays a role in sucrose signalling during early seedling development. Disruption of the ACA8 gene elevated the expression of genes that encode transporters for Ca2+ efflux. The seedlings that carried a T-DNA insertion mutation in ACA8 experienced water stress during early development. This response was unrelated to inadequate osmoregulatory responses and was most likely caused by disruption of cell membrane integrity and severe ion leakage. In addition, aca8-1 seedlings displayed a significant decline in photosynthetic performance and arrested root growth after removal of sucrose from the growth medium. The two phenomena resulted from impaired photosynthesis, reduced cell proliferation in the root meristem and the sucrose control of cell-cycle events. All of the stress-response phenotypes were rescued when expression of ACA8 was restored in aca8-1 mutant. Taken together, our results indicate that ACA8-mediated Ca2+ signalling contributes to modulate early seedling development and coordinates root development with nutrient availability.  相似文献   

19.

Background and aims

Plant-soil interactions are a crucial component of ecosystem functioning. However, most global change studies focus on plant communities, with information on soil properties and performance being scarce. Our goal was to assess the individual and joint effect of habitat heterogeneity and three global change drivers (fragmentation, loss of habitat quality and climate change) on nutrient availability and soil microbial activity in Mediterranean gypsum soils.

Methods

We collected soil samples from an experimental field site from large/small fragments, with high/low habitat quality, subjected to two levels of water availability (dry/mesic) and from two microhabitats (under the canopy of shrubs and in the open). We analyzed nutrient concentrations (C, N and P) and enzymatic activities (?-glucosidase, urease and acid phosphatase).

Results

C, N, P content, ?-glucosidase, urease and acid phosphatase activities were higher under the canopy than in the open and in high- than in poor- habitat quality sites. These differences were exacerbated in small fragments.

Conclusions

The strong interdependence between plant and soil was modulated by fragmentation in the Mediterranean gypsum soils studied. Drought did not exert a direct negative effect on soil properties, although the effect might arise under more intense drought or under drought taking place at times of the year different from those explored here. Results highlight the importance of considering several drivers simultaneously to forecast realistic ecosystem responses to global change.  相似文献   

20.

Background and aims

Phosphorus and nitrogen availability and forms are affected by soil properties as well as by plant species and further modulated by soil microbes. Additionally, close contact of the roots of two plant species may affect concentrations and forms of N and P. The aim of this study was to assess properties related to N and P cycling in the rhizosphere of wheat and legumes grown in monoculture or in wheat/legume mixtures in three soils differing in pH.

Methods

Faba bean, white lupin and wheat were grown in three soils differing in pH (4.8, 7.5 and 8.8) in monoculture or in mixed culture of wheat and legumes. Rhizosphere soil was collected at flowering and analyzed for P pools by sequential fractionation, available N as well as community structure of bacteria, fungi, ammonia oxidizers, N2-fixers and P mobilizers by polymerase chain reaction (PCR)—denaturing gradient gel electrophoresis (DGGE).

Results

Soil type was the major factor determining plant growth, rhizosphere nutrient dynamics and microbial community structure. Among the crop species, only faba bean had a significant effect on nitrification potential activity (PNA) in all three soils with lower activity compared to the unplanted soil. Soil type and plant spieces affected the community composition of ammonia-oxidizing archaea (AOB), ammonia-oxidizing archaea (AOA), N2-fixers (nifH), P mobilizers (ALP gene) and fungi, but not that of bacteria. Among the microbial groups, the AOA and nifH community composition were most strongly affected by crop species, cropping system and soil type, suggesting that these groups are quite sensitive to environmental conditions. All plants depleted some labile as well as non-labile P pools whereas the less labile organic P pools (NaOH extractable P pools, acid extractable P pools) accumulated in the rhizosphere of legumes. The pattern of depletion and accumulation of some P pools differed between monoculture and mixed culture as well as among soils.

Conclusions

Plant growth and rhizosphere properties were mainly affected by soil type, but also by crop species whereas cropping system had the least effect. Wheat and the legumes depleted less labile inorganic P pools in some soils whereas less labile organic P pools (NaOH extractable P, acid extractable P) accumulated in the rhizosphere of legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号