首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The alternative splicing of myelin-associated glycoprotein (MAG) mRNA generates two isoforms that harbor distinct potential phosphorylation sites in their cytoplasmic tails. Here we characterize the in vivo phosphorylation of MAG isoforms in NIH 3T3 cells transfected with the cDNAs encoding the two isoforms of MAG. Our results demonstrate that the longer isoform, L-MAG, is phosphorylated constitutively mainly on serine, but also on threonine and tyrosine residues. This phosphorylation is subject to change by 12-O-tetradecanoylphorbol 13-acetate (TPA) and ammonium vanadate, but not by dibutyryl-cyclic AMP. The shorter isoform, S-MAG, is constitutively phosphorylated only on serine residues. While TPA and dibutyryl-cyclic AMP have no detectable effect, ammonium vanadate induces tyrosine and threonine phosphorylation in S-MAG. 32P labeling of v-src-transformed NIH 3T3 cells that express L-MAG also show that L-MAG is likely to be an in vivo substrate for pp60v-src tyrosine kinase activity. These results demonstrate that both MAG isoforms are phosphorylated in a heterologous cell system and that this phosphorylation is subject to pharmacological manipulation.  相似文献   

2.
Myelin-associated glycoprotein (MAG) was radioactively labelled with 32P both in intact brain and in myelin membrane preparations. Chemical deglycosylation of the phosphorylated products revealed that only one of the MAG isoforms (L-MAG) is labelled in vitro. Furthermore, the phosphorylation events in vivo and in vitro are confined to the cytoplasmic portion of the L-MAG isoform. Tryptic mapping of L-MAG labelled both in vivo and in vitro revealed that the majority of the sites phosphorylated in intact brain are also phosphorylated in myelin membrane preparations; however, the extent of phosphorylation at individual sites is variable. The results demonstrate that partially purified myelin membrane preparations can be used to study the enzymes responsible for MAG phosphorylation and dephosphorylation events in vivo.  相似文献   

3.
The human weel protein, a homologue of the yeast weel protein, was expressed in E. coli and purified to homogeneity. The purified weel protein phosphorylated the tyrosine residue of cdc2 kinase in HeLa cell extracts in the presence of human cyclin B1. It also phosphorylated the tyrosine but not the threonine residue in the peptide of the amino-terminal of cdc2 kinase, although both these residues have been shown to be phosphorylated in higher eukaryotes in vivo. Furthermore, serine and tyrosine residues of the yeast weel protein are reportedly autophosphorylated in vitro, however the tyrosine residue of the human weel protein was autophosphorylated whereas the serine and threonine residues were not. These data indicate that human p50weel is tyrosine kinase and that it phosphorylated the tyrosine residue of the amino-terminal of cdc2 kinase in the presence of cyclin B1 and that the threonine residue is phosphorylated by another, unknown kinase.  相似文献   

4.
p44erk1 is a member of a family of tyrosyl-phosphorylated and mitogen-activated protein (MAP) kinases that participate in cell cycle control. A full-length erk1 cDNA was isolated from a human hepatoma cell line (Hep G2) library. The erk1 cDNA clone shared approximately 96% predicted amino acid identity with partial sequences of rodent erk1 cognates, and the erk1 gene was assigned to human chromosome 16 by hybrid panel analysis. Human erk1 expressed in Escherichia coli as a glutathione S-transferase fusion (GST-Erk1) protein was substantially phosphorylated on tyrosine in vivo. It underwent further autophosphorylation in vitro (up to 0.01 mol of P per mol) at the regulatory Tyr-204 site and at additional tyrosine and serine residues. Threonine autophosphorylation, presumably at the regulatory Thr-202 site, was also detected weakly when the recombinant kinase was incubated in the presence of manganese, but not in the presence of magnesium. Before and after cleavage of the GST-Erk1 protein with thrombin, it exhibited a relatively high level of myelin basic protein phosphotransferase activity, which could be reduced eightfold by treatment of the kinase with the protein-tyrosine phosphatase CD45, but not by treatment with the protein-serine/threonine phosphatase 2A. The protein-tyrosine kinase p56lck catalyzed phosphorylation of GST-Erk1 at two autophosphorylations sites, including Tyr-204, and at a novel site. A further fivefold stimulation of the myelin basic protein phosphotransferase activity of the GST-Erk1 was achieved in the presence of a partially purified MAP kinase kinase from sheep platelets. Under these circumstances, there was primarily an enhancement of the tyrosine phosphorylation of GST-Erk1. This MAP kinase kinase also similarly phosphorylated a catalytically compromised version of GST-Erk1 in which Lys-71 was converted to Ala by site-directed mutagenesis.  相似文献   

5.
Although CD45 resembles the low Mr protein tyrosine phosphatases (PTPases) from human placenta in its specificity for phosphotyrosyl residues and absolute dependence on sulfhydryl compounds for activity, it also exhibits a number of distinguishing features. Most notably, it displayed substrate specificity in vitro, preferentially dephosphorylating myelin basic protein, over the other substrates tested, with high specific activity. Limited trypsinization of CD45 generated active fragments of approximately 65 kDa that were apparently derived exclusively from the intracellular segment of the molecule. These retained high activity against myelin basic protein, suggesting that this is an intrinsic feature of the PTPase domains and not the result of secondary interactions between the substrate and the putative ligand binding structure. With reduced carboxamidomethylated and maleylated lysozyme as substrate, CD45 was stimulated up to 12-fold by basic compounds such as spermine; divalent metal ions were also stimulatory, most notably Zn2+, which was previously identified as a potent inhibitor of the low Mr PTPases. CD45 was phosphorylated to high stoichiometry by casein kinase-2 (up to 1.5 mol/mol) and also by glycogen synthase kinase 3 (approximately 0.3 mol/mol) and protein kinase C (approximately 0.1 mol/mol); in all cases, no alteration in enzyme activity was detected following these modifications. Autophosphorylated preparations of epidermal growth factor receptor, insulin receptor, and p56lck protein tyrosine kinases were also substrates for CD45 in vitro.  相似文献   

6.
Abscisic acid (ABA) induces a rapid and transient mitogen-activated protein (MAP) kinase activation in barley aleurone protoplasts. MAP kinase activity, measured as myelin basic protein phosphorylation by MAP kinase immunoprecipitates, increased after 1 min, peaked after 3 min, and decreased to basal levels after ~5 min of ABA treatment in vivo. Antibodies recognizing phosphorylated tyrosine residues precipitate with myelin basic protein kinase activity that has identical ABA activation characteristics and demonstrate that tyrosine phosphorylation of MAP kinase occurs during activation. The half-maximal concentration of ABA required for MAP kinase activation, 3 x 10-7 M, is very similar to that required for ABA-induced rab16 gene expression. The tyrosine phosphatase inhibitor phenylarsine oxide can completely block ABA-induced MAP kinase activation and rab16 gene expression. These results lead us to conclude that ABA activates MAP kinase via a tyrosine phosphatase and that these steps are a prerequisite for ABA induction of rab16 gene expression.  相似文献   

7.
8.
P(0), the major protein of PNS myelin, is considered to play a critical role in the compaction and stabilization of myelin lamellae. The protein undergoes extensive posttranslational modifications, including phosphorylation at multiple serine moieties in the cytoplasmic region. Recently, we demonstrated that P(0) is phosphorylated on one or more tyrosine residues in rat nerve homogenates after incubation. In this study, we show that P(0) phosphorylated on tyrosine is also present in the intact animal. The proportion of P(0) molecules phosphorylated on tyrosine is highest during the first postnatal week, a period that coincides with the most rapid period of myelin deposition in the PNS. A peptide that constitutes the cytoplasmic domain was isolated from purified P(0) and shown by immunochemical and chemical means to be phosphorylated on the tyrosine corresponding to Y(191) in the intact protein. No evidence was obtained supporting the possibility that P(0) is phosphorylated on other tyrosine residues. The sequence of amino acids surrounding Y(191) resemble known substrate phosphorylation sites for some nonreceptor cytoplasmic tyrosine kinases, as well as tyrosine-based recognition signals associated with clathrin vesicle-mediated cndocytosis.  相似文献   

9.
A protein kinase of 57 kDa, able to phosphorylate tyrosine in synthetic substrates pol(Glu4,Tyr1) and a fragment of Src tyrosine kinase, was isolated and partly purified from maize seedlings (Zea mays). The protein kinase was able to phosphorylate exogenous proteins: enolase, caseins, histones and myelin basic protein. Amino acid analysis of phosphorylated casein and enolase, as well as of phosphorylated endogenous proteins, showed that both Tyr and Ser residues were phosphorylated. Phosphotyrosine was also immunodetected in the 57 kDa protein fraction. In the protein fraction there are present 57 kDa protein kinase and enolase. This co-purification suggests that enolase can be an endogenous substrate of the kinase. The two proteins could be resolved by two-dimensional electrophoresis. Specific inhibitors of typical protein-tyrosine kinases had essentially no effect on the activity of the maize enzyme. Staurosporine, a nonspecific inhibitor of protein kinases, effectively inhibited the 57 kDa protein kinase. Also, poly L-lysine and heparin inhibited tyrosine phosphorylation by 57 kDa maize protein kinase. The substrate and inhibitor specificities of the 57 kDa maize protein kinase phosphorylating tyrosine indicate that it is a novel plant dual-specificity protein kinase.  相似文献   

10.
The c-fms protein is a receptor for macrophage colony-stimulating factor (M-CSF) with intrinsic protein-tyrosine kinase activity. We investigated the tyrosine phosphorylation of murine c-fms proteins expressed from a retroviral vector in factor-dependent myeloid FDC-P1 cells and in BALB/c 3T3 fibroblasts transformed by the expression of the c-fms gene. FDC-P1 cells expressing c-fms were able to grow and differentiate in response to M-CSF. Their c-fms proteins were normally phosphorylated on serine and became phosphorylated on tyrosine residues contained in five tryptic peptides when the cells were exposed to M-CSF. A subset of these peptides was constitutively phosphorylated in BALB/c cells expressing c-fms, consistent with the production of M-CSF by these cells. All the peptides detected in vivo were also phosphorylated in vitro. These peptides were analyzed by susceptibility to proteases, comparison with synthetic peptides, and site-directed mutagenesis. The identities of four of the tryptic peptides were determined; they arise from three unique tyrosine phosphorylation sites. One major site of tyrosine phosphorylation at residue 697 accounted for two of the tryptic peptides. A second major site was identified at tyrosine residue 706. These two tyrosine phosphorylation sites are located within the tyrosine kinase insert region. Tyrosine 807, which has homology to the major autophosphorylation site of the p60v-src tyrosine kinase, is a minor autophosphorylation site. Possible functional roles for these phosphorylations of the c-fms protein include interactions with substrate proteins, catalytic activity, and ligand-induced degradation.  相似文献   

11.
The receptors for polypeptide growth factors and proteins coded by oncogenes of the src family are endowed with protein kinase activity and share the uncommon property of autophosphorylating at tyrosine residues. It is unclear whether the tyrosine kinase activity is also directed towards other targets of physiological significance. In this work, phosphotyrosine antibodies were used to detect, by Western blots and immunoprecipitation, proteins phosphorylated at tyrosine in fibroblasts either stimulated by growth factors (PDGF and EGF) or transformed by oncogene-coded tyrosine kinases. In stimulated cells the antibodies detected the autophosphorylated receptors, but only trace amounts of other proteins phosphorylated at tyrosine. In fibroblasts transformed by retroviral oncogenes (v-src, v-abl, v-fps or v-fes) proteins other than the corresponding oncogene-coded kinase, were found. A p70 was found to be heavily phosphorylated in fibroblasts transformed by v-src, v-fes and v-fps. A p130 and a p36 were found in cells transformed by v-src and v-abl. A unique p70 was phosphorylated in v-abl-transformed fibroblasts. These proteins were also phosphorylated in vitro in an immunocomplex kinase reaction. This reaction was blocked by the specific kinase inhibitors. These data strongly suggest that tyrosine kinases phosphorylate protein targets other than themselves. These targets are barely detectable in normal cells stimulated by growth factors, where the kinase activity is triggered rapidly and transiently. By contrast, a number of intracellular proteins phosphorylated at tyrosine accumulate in cells transformed by v-onc-coded kinases, endowed with constitutive and non-regulated enzymatic activity.  相似文献   

12.
A number of oncogenic viruses encode transforming proteins with protein kinase activities apparently specific for tyrosine residues. Recent evidence has raised questions as to the substrate specificity of these kinases in general and the physiological relevance of tyrosine phosphorylation in particular. The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) is strongly phosphorylated at 2 tyrosine residues in FSV-transformed cells of which 1 (Tyr-1073) is also the major site of P130gag-fps intermolecular autophosphorylation in vitro. We have investigated the specificity of the protein kinase activity intrinsic to FSV P130gag-fps by using site-directed mutagenesis to change the codon for Tyr-1073 to those for the other commonly phosphorylated hydroxyamino acids, serine and threonine. This approach has some advantages over the use of synthetic peptides to define protein kinase recognition sites in that the protein containing the altered target site can be expressed in intact cells. In addition it allows higher order as well as primary structure of the enzyme recognition site to be considered. Neither serine nor threonine were phosphorylated when substituted for tyrosine at position 1073 of P130gag-fps indicating a stringent specificity for tyrosine as a substrate of the P130gag-fps protein kinase autophosphorylating activity. Consistent with the suggestion that tyrosine phosphorylation is of functional significance we find that these and other FSV Tyr-1073 mutants have depressed enzymatic and oncogenic capacities.  相似文献   

13.
R A Feldman  T Hanafusa  H Hanafusa 《Cell》1980,22(3):757-765
Fujinami sarcoma virus (FSV), a newly characterized avian sarcoma virus, produces a protein of 140,000 daltons (p140) in infected cells. p140 is the product of a fused gene consisting of a part of the gag gene of avian retrovirus and FSV-unique sequences which are not related to the src sequences of Rous sarcoma virus. In vivo, p140 was found to be phosphorylated at both serine and tyrosine residues. Immunoprecipitates of p140 with antiserum against gag gene-coded proteins had a cyclic nucleotide-independent protein kinase activity which phosphorylated p140 itself, rabbit IgG of the immune complex and alpha-casein, an externally added soluble protein substrate. The phosphorylation was specific to tyrosine of the substrate proteins. p140 was phosphorylated in vitro at the same two tyrosine residues that were phosphorylated in vivo. The phosphate transferred to tyrosine residues of p140 forms a stable bond: it does not turn over during the kinase reaction, and the 32P-phosphate of p140 labeled in vitro or in vivo is not transferred to alpha-casein. FSV-p140 differs from p60src, the transforming protein of Rous sarcoma virus, in its marked preference of Mn2+ to Mg2+ ions, and in its inability to use GTP instead of ATP as the donor of gamma-phosphate.  相似文献   

14.
Chemical degradation and antipeptide antibodies were used to study alterations in the structure and function of the human placental insulin receptor following autophosphorylation in vitro. Antibodies elicited to residues 1143-1162 (P2) of the human insulin proreceptor immunoprecipitated the native, phosphorylated receptor but not the unphosphorylated receptor. Since this antibody recognizes both forms of the receptor on immunoblots, it was concluded that the accessibility of the P2 domain to the antibody is increased by in vitro autophosphorylation. Chemical cleavage at either tryptophan or methionine residues followed by immunoprecipitation with antipeptide antibodies was used to map the in vitro autophosphorylation sites of the beta subunit of the insulin receptor. Two phosphorylated fragments were resolved. One, recognized by antibody elicited to amino acid residues 1328-1343 (P5), is derived from the carboxyl terminus of the beta subunit and includes tyrosine 1316. The other, recognized by antibody to P2, is located in a domain that includes tyrosine 1150. The rate of phosphorylation of this latter site correlates with the rate of activation of the insulin receptor kinase during in vitro autophosphorylation. The results support the following conclusions: autophosphorylation alters the conformation of the beta subunit of the insulin receptor; autophosphorylation in vitro leads to phosphorylation of tyrosine residues near the carboxyl terminus of the protein and in the P2 domain that includes tyrosine 1150; activation of the insulin receptor kinase correlates with autophosphorylation of the domain containing tyrosine 1150.  相似文献   

15.
alpha-Synuclein (alpha-Syn) is implicated in the pathogenesis of Parkinson's Disease, genetically through missense mutations linked to early onset disease and pathologically through its presence in Lewy bodies. alpha-Syn is phosphorylated on serine residues; however, tyrosine phosphorylation of alpha-Syn has not been established (, ). A comparison of the protein sequence between Synuclein family members revealed that all four tyrosine residues of alpha-Syn are conserved in all orthologs and beta-Syn paralogs described to date, suggesting that these residues may be of functional importance (). For this reason, experiments were performed to determine whether alpha-Syn could be phosphorylated on tyrosine residue(s) in human cells. Indeed, alpha-Syn is phosphorylated within 2 min of pervanadate treatment in alpha-Syn-transfected cells. Tyrosine phosphorylation occurs primarily on tyrosine 125 and was inhibited by PP2, a selective inhibitor of Src protein-tyrosine kinase (PTK) family members at concentrations consistent with inhibition of Src function (). Finally, we demonstrate that alpha-Syn can be phosphorylated directly both in cotransfection experiments using c-Src and Fyn expression vectors and in in vitro kinase assays with purified kinases. These data suggest that alpha-Syn can be a target for phosphorylation by the Src family of PTKs.  相似文献   

16.
High yields of soluble, biologically active pp60c-src and middle t antigen (MTAg) of polyomavirus were produced in insect cells, using a baculovirus expression system. In mammalian cells, pp60c-src undergoes a regulatory phosphorylation on Tyr-527 in vivo and is autophosphorylated on Tyr-416 in vitro. In insect cells, pp60c-src was phosphorylated primarily on Tyr-416, although Tyr-527 was detectable at a low level. A kinase-negative mutant of pp60c-src was not phosphorylated on either Tyr-527 or Tyr-416 in insect cells and thus is an excellent biochemical reagent to search for the regulatory kinase that usually phosphorylates Tyr-527 in mammalian cells. MTAg synthesized in insect cells was not phosphorylated on tyrosine residues in vivo or in vitro, suggesting that it did not associate with any endogenous tyrosine kinases. However, MTAg isolated from cells coinfected with viruses encoding both MTAg and pp60c-src was phosphorylated on tyrosine residues both in vivo and in vitro.  相似文献   

17.
Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.  相似文献   

18.
T Pawson  J Guyden  T H Kung  K Radke  T Gilmore  G S Martin 《Cell》1980,22(3):767-775
Cells infected by one strain of Fujinami sarcoma virus (FSV) are transformed at 38 degrees C but are phenotypically normal at 41.5 degrees C. FSV encodes a 140,000 molecular weight protein (P140) with gag gene-related and FSV-specific peptide sequences. At 41.5 degrees C, P140 is weakly phosphorylated at serine residues, and is inactive in the immune complex protein kinase assay. At 38 degrees C, P140 is highly phosphorylated, contains phosphotyrosine in addition to phosphoserine, and in the immune complex kinase assay becomes phosphorylated at three tyrosine residues. Phosphorylation of cellular polypeptides at tyrosine residues in FSV-infected cells is also temperature-sensitive. These observations indicate that P140 is the transforming protein of FSV and that protein phosphorylation at tyrosine residues is involved in transformation by this virus.  相似文献   

19.
Roof RW  Dukes BD  Chang JH  Parsons SJ 《FEBS letters》2000,472(1):117-121
p190 RhoGAP is a multi-domain protein that is thought to regulate actin cytoskeleton dynamics. It can be phosphorylated both in vitro and in vivo at multiple sites by the Src tyrosine kinase and one or more of these sites is postulated to modulate p190 function. One of the regions which is multiply phosphorylated by Src in vitro is the N-terminal GTP binding domain. Using a partially purified, bacterially expressed recombinant protein that includes the GTP binding domain (residues 1-389), we show that GTP binds to this fragment in a specific and saturable manner that is both time- and dose-dependent and that tyrosine phosphorylation of this fragment by c-Src results in a loss of GTP binding activity. These findings suggest that tyrosine phosphorylation of the p190 N-terminal domain can alter its ability to bind GTP.  相似文献   

20.
Antibodies were raised against three synthetic peptides corresponding to sequences surrounding tyrosine 315, a putative in vitro phosphorylation site in polyomavirus middle-T antigen. Only one of the peptides (called C and corresponding to residues 311 to 330) elicited antibodies that recognized middle-T efficiently. Middle-T present in immunoprecipitates formed with purified anti-C serum still accepted phosphate on tyrosine in an in vitro kinase reaction. This implies that tyrosines other than 315 and 322 that lie within the antibody binding region are phosphorylated under these conditions. This conclusion was supported by the altered partial V8 proteolysis fingerprint of the labeled middle-T. Two-dimensional tryptic fingerprint analysis of 32P-labeled middle-T showed that several tryptic peptides identified as including tyrosine 315 and 322 were missing from middle-T labeled in anti-C immunoprecipitates compared with middle-T labeled in immunoprecipitates made by using anti-tumor cell serum. However, one major labeled peptide remained. This peptide was also present in fingerprints of 32P-labeled middle-T coded by M45, dl23, pAS131, and dl1013, but a peptide with altered mobility was present in dl8 middle-T. This identified the peptide as including tyrosine 250. We deduce from these data that (i) the presence of the antibody against peptide C inhibits phosphorylation of tyrosines 315 and 322; (ii) middle-T labeled in the kinase reaction after immunoprecipitation with anti-C serum is phosphorylated on tyrosine 250; and (iii) when anti-tumor cell serum is used in the in vitro kinase reaction, middle-T is phosphorylated at multiple sites, including residues 250, 315, and 322.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号