首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Soedarjo  M. Habte 《Plant and Soil》1993,149(2):197-203
A greenhouse investigation was undertaken to determine the influence of fresh organic matter on the formation and functioning of vesicular-arbuscular mycorrhizal symbiosis in Leucaena leucocephala grown in an acid aluminum-rich ultisol. In soil not amended with fresh organic matter or lime, plants failed to grow. Mycorrhizal infection level, mycorrhizal effectiveness measured in terms of pinnule P content of L. leucocephala leaves and dry matter yield of the legume increased with increase in fresh organic matter. Although VAM colonization level and dry matter yield of L. leucocephala were significantly higher if the test soil was limed (7.2 cmole OH) than if amended with fresh organic matter, the latter was as effective as lime in off-setting the detrimental effect of aluminum on mycorrhizal effectiveness. The lower mycorrhizal colonization level and the lower dry matter yield noted in the soil treated with fresh organic matter appears to be related to the inadequacy of Ca in the soil amended with fresh organic matter. These observations are supported by the low calcium status of soil and plant tissues in the absence of lime. It is concluded that while fresh organic matter, in appropriate amounts, could protect sensitive plants and VAM symbiosis against Al toxicity in acid soils, maximum mycorrhizal inoculation effects are not likely to be attained unless the soils are also amended with Ca.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No 3740.  相似文献   

2.
Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the “nature of current research data on terrestrial algae,” “methodological approaches,” “diversity,” “environmental relationships,” “ecological roles,” and “economic significance.” The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.  相似文献   

3.
吕刚  王婷  李叶鑫  魏忠平  王凯 《生态学报》2017,37(24):8294-8303
以科尔沁沙地南缘的彰武县章古台万亩林为研究对象,野外取样调查和实验室检测分析相结合,以樟子松固沙林采伐迹地为对照,研究不同植被恢复类型下樟子松固沙林更新迹地生境的改良效果,探讨植被重建后植物多样性及土壤理化性质的响应。结果表明:1)樟子松(Pinus sylvestris)固沙林更新迹地植被重建后,草本植物物种多样性增加,林下植物偶见种数目增多,13种草本植物在8个样地中未重复出现;2)与采伐迹地相比,不同植被重建类型土壤理化性质均有所改善,土壤容重、田间持水量、有机质、全氮、碱解氮、速效钾在彰武小钻杨(Populus xiaozhuanica)、五角枫(Acer mono)林地改良效果较好,全钾在红刺榆林(Hemiptelea davidii)地含量明显提高、山杏(Armeniaca sibirica)林地的有效磷相比采伐迹地明显提高,且均表现为上层改良效果优于下层;3)不同植被恢复类型土壤理化性质间存在显著差异,随着物种多样性的增加,土壤理化性质逐渐改善,土壤容重、田间持水量、有机质、全磷与植物多样性具有显著的相关性,土壤理化性质的与植物多样性相互作用,共同促进生态系统正向演替。研究结果为控制科尔沁沙地土壤沙化,加速该区生态系统的恢复与重建提供理论依据。  相似文献   

4.
为全面了解着生藻类在建群中群落变化的生态学特性,揭示着生藻类的建群规律,在以丝状藻类为优势藻的生态塘中,采用花岗岩和瓷砖为附着材料,设置水体底部和中部为附着位点,进行频次为10d的采样分析。结果表明,生态塘中共检出8门73属117种着生藻类,其中以硅藻、蓝藻、绿藻为优势类群。同时不同人工基质和不同空间层次条件下着生藻类的建群特征较一致,早期以单细胞硅藻如舟形藻(Navicula sp.)、脆杆藻(Fragilaria sp.)、曲壳藻(Achnanthes sp.)等为优势,后期以丝状藻类如鞘丝藻(Lyngbya sp.)、颤藻(Oscillatoria sp.)、伪鱼腥藻(Pseudanabaena sp.)等为优势;研究结果发现不同人工基质(花岗岩和瓷砖)对着生藻类的种类组成、细胞密度、生物量和藻类多样性无显著影响,花岗岩和瓷砖上附着的着生藻类具有较高的相似性;但不同的空间层次对着生藻类建群特征影响明显,水体底部具有更多的硅藻种类数,中部具有更多的绿藻,随着建群时间的发展,蓝藻比例不断增加;就生物量而言,底部的着生藻类叶绿素a显著高于水体中部,但两者的细胞密度无显著性差异;随着建群过程的发展,水体底部的着生藻类生物量达峰值所需的时间比中部更长。通过相关性分析,生态塘中着生藻类的生长主要受总磷的影响。  相似文献   

5.
万志强  杨九艳  谷蕊  闫玉龙  梁艳  杨劼  高清竹 《生态学报》2016,36(17):5477-5484
在草原生态系统中,土壤是植物生长发育最重要的基质,对植物群落动态有显著的影响。刈割是内蒙古典型草原区除放牧外最重要的利用方式。研究不同刈割频度对典型草原区群落特征和若干土壤性质的影响及土壤因子与群落特征的相关性,旨在得出对群落多样性最有利并最适宜生产利用的刈割频度。研究区设置在内蒙古锡林浩特市东部以大针茅建群的典型草原;在2009—2013年进行不同频度的刈割处理,共设置处理,一年两次刈割、一年一次刈割、两年一次(割一年休一年)刈割、围封,在2013年8月采集测定土壤养分的样品。刈割对群落多样性影响显著,割一年休一年Shannon-Wiener多样性指数、Pielou均匀度指数、丰富度指数均高于其他刈割处理(P0.05);不同频度刈割下,一年两次刈割处理下土壤20—30cm和30—40cm的有机质含量显著高于其他处理(P0.05);不同频度刈割处理下土壤中的速效磷和速效氮的含量没有显著差异;一年两次处理的土壤全氮含量显著高于其他处理(P0.05)。Shannon-Wiener多样性指数与有机质含量、全氮含量呈显著负相关;Pielou均匀度指数与土壤元素间无显著相关关系;Richness指数与有机质含量呈显著负相关,与全氮含量为极显著负相关关系。割一年休一年刈割处理下土壤元素含量呈现更好的状态,结合群落物种多样性及生产利用的角度,割一年休一年为最合理的刈割频度。  相似文献   

6.
As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as ‘The Oriental Botanic Garden’ for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits.  相似文献   

7.
Landslides are a frequent disturbance in montane tropical rainforests that result in heterogeneous environments for plant and soil development. Natural inputs of organic matter and associated nutrients contribute to soil fertility patchiness within landslides. To test the importance of organic matter and nutrient addition to landslide soil fertility and plant growth, we mixed three types of organic matter substrates that are common to landslides (Cecropia leaves, Cyathea fronds, and forest soil) and commercial fertilizer into recently eroded soil on five landslides in Puerto Rico. In addition, we sowed seeds of two common landslide colonists (Paspalum and Phytolacca) into the soil treatment plots in order to test treatment effects on seed germination and seedling growth. Soils, seed germination, and seedling growth were monitored for one year and the field experiment was replicated in a one-year screen-house experiment. Despite highly variable initial landslide conditions, responses to soil treatments were similar across all five landslides. The forest soil addition increased total soil nitrogen and soil organic matter on landslides within 60 days, whereas Cecropia leaves provided increased soil organic matter only after 210 days. Commercial fertilizer increased plant-available soil nitrogen and phosphorus within 60 days, and also increased seed germination of Paspalum seeds when compared to soils treated with Cecropia leaves. Despite these positive effects of treatments on soils and germination, there were no treatment effects on seedling growth in the field, perhaps due to leaching or other losses of soil nutrients evident in the lack of significant treatment differences in soil resources at 370 days. In the screen-house, forest soil and commercial fertilizer treatments significantly increased soil fertility and seedling growth of both Paspalum and Phytolacca compared to control treatments. These different responses to three common types of organic matter inputs create patchy soil conditions with important implications for plant colonization and landslide succession.  相似文献   

8.
Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North‐central Arizona, USA. Methods: We sampled 75 0.05‐ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non‐linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests.  相似文献   

9.
M. Habte  T. Aziz  J. E. Yuen 《Plant and Soil》1992,140(2):263-268
The residual effect of the fungicide chlorothalonil on the vesicular-arbuscular mycorrhizal (VAM) symbiosis was evaluated in a greenhouse experiment. The soil used was an oxisol (Tropeptic Eutrustox) treated with P to obtain target levels near-optimal for VAM activity or sufficient for nonmycorrhizal host growth. In the uninoculated soil treated with the former P level, the fungicide reduced VAM colonization of roots and completely suppressed symbiotic effectiveness measured in terms of pinnule P content. When this soil was inoculated with Glomus aggregatum, symbiotic effectiveness was significantly reduced but not eliminated by 50 mg of the fungicide kg−1. At higher chlorothalonil levels, VAM effectiveness but not VAM colonization was completely suppressed in the inoculated soil. The pattern with which chlorothalonil influenced tissue P content and dry matter yield at the time of harvest closely paralleled its effect on VAM effectiveness. In the soil treated with P level sufficient for nonmycorrhizal host growth, the adverse effect of the fungicide on the above variables was appreciably milder than when the host relied on VAM fungi for its P supply. The toxic effect of the fungicide, therefore, was partly offset by P fertilization, suggesting that VAM fungi were more sensitive to chlorothalonil than the host. Our results demonstrate that although the toxic effect of chlorothalonil declined as a function of time, a significant level of toxicity persisted 12.5 weeks after the chemical was applied to soil. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3625. Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3625.  相似文献   

10.
Anand Swarup 《Plant and Soil》1988,106(1):135-141
The influence of organic matter, added in the form ofCasuarina equisetifolia andAcacia nilotica leaves, on the chemical and electrochemical kinetics of a flooded sodic soil and rice growth, was studied in a pot experiment. With the addition of organic matter, not only the peaks of CO2 production and maximum concentrations of extractable Fe and Mn and other cations occurred earlier, but their concentrations were also significantly higher as compared to the control (no organic matter). The high concentrations of CO2 and reduced redox potential (Eh) appeared to influence the soil pH, exchangeable sodium percentage (ESP) and the accumulation of cations and to be chiefly responsible for better rice growth. Acacia proved more effective than Casuarina in improving rice yield and the sodic soil.  相似文献   

11.
We conducted a study to evaluate the relative importance of topography, grazing, the location of individual plants (microsite), and plant species in controlling the spatial variability of soil organic matter in shortgrass steppe ecosystems. We found that the largest spatial variation occurs in concert with topography and with microsite-scale heterogeneity, with relatively little spatial variability due to grazing or to plant species. Total soil C and N, coarse and fine particulate organic matter C and N, and potentially mineralizable C were significantly affected by topography, with higher levels in toeslope positions than in midslopes or summits. Soils beneath individual plants (Bouteloua gracilis and Opuntia polyacantha) were elevated by 2–3 cm relative to surrounding soils. All pools of soil organic matter were significantly higher in the raised hummocks directly beneath plants than in the soil surface of interspaces or this layer under plants. High levels of mineral material in the hummocks suggest that erosion is an important process in their formation, perhaps in addition to biotic accumulation of litter beneath individual plants. Over 50 y of heavy grazing by cattle did not have a significant effect on most of the soil organic matter pools we studied. This result was consistent with our hypothesis that this system, with its strong dominance of belowground organic matter, is minimally influenced by aboveground herbivory. In addition, soils beneath two of the important plant species of the shortgrass steppe, B. gracilis and O. polyacantha, differed little from one another. The processes that create spatial variability in shortgrass steppe ecosystems do not affect all soil organic matter pools equally. Topographic variability, developing over pedogenic time scales (centuries to thousands of years), has the largest effect on the most stable pools of soil organic matter. The influence of microsite is most evident in the pools of organic matter that turn over at time scales that approximate the life span of individual plants (years to decades and centuries).  相似文献   

12.
Soils are important for ecosystem functioning and service provisioning. Soil communities and their functions, in turn, are strongly promoted by plant diversity, and such positive effects strengthen with time. However, plant diversity effects on soil organic matter have mostly been investigated in the topsoil, and there are only very few long-term studies. Thus, it remains unclear if plant diversity effects strengthen with time and to which depth these effects extend. Here, we repeatedly sampled soil to 1 m depth in a long-term grassland biodiversity experiment. We investigated how plant diversity impacted soil organic carbon and nitrogen concentrations and stocks and their stable isotopes 13C and 15N, as well as how these effects changed after 5, 10, and 14 years. We found that higher plant diversity increased carbon and nitrogen storage in the topsoil since the establishment of the experiment. Stable isotopes revealed that these increases were associated with new plant-derived inputs, resulting in less processed and less decomposed soil organic matter. In subsoils, mainly the presence of specific plant functional groups drove organic matter dynamics. For example, the presence of deep-rooting tall herbs decreased carbon concentrations, most probably through stimulating soil organic matter decomposition. Moreover, plant diversity effects on soil organic matter became stronger in topsoil over time and reached subsoil layers, while the effects of specific plant functional groups in subsoil progressively diminished over time. Our results indicate that after changing the soil system the pathways of organic matter transfer to the subsoil need time to establish. In our grassland system, organic matter storage in subsoils was driven by the redistribution of already stored soil organic matter from the topsoil to deeper soil layers, for example, via bioturbation or dissolved organic matter. Therefore, managing plant diversity may, thus, have significant implications for subsoil carbon storage and other critical ecosystem services.  相似文献   

13.
植物、土壤及土壤管理对土壤微生物群落结构的影响   总被引:26,自引:2,他引:24  
土壤微生物是土壤生态系统的重要组成部分,对土壤微生物群落结构多样性的研究是近年来土壤生态学研究的热点。本文综述了有关植物、土壤类型以及土壤管理措施对土壤微生物群落结构影响的最新研究结果,指出植物的作用因植物群落结构多样性、植物种类、同种植物不同的基因型,甚至同一植物不同根的区域而异;而土壤的作用与土壤质地和有机质含量等因素有关;植物和土壤类型在对土壤微生物群落结构影响上的作用存在互作关系。不同的土壤管理措施对土壤微生物群落结构影响较大,长期连作、大量的外援化学物质的应用降低了土壤微生物的多样性;而施用有机肥、免耕可以增加土壤微生物群落结构多样性,有利于维持土壤生态系统的功能。  相似文献   

14.
《农业工程》2021,41(4):341-345
Plant litter is dead, above and below ground; organic material i.e. leaves barks, needles, twigs and roots. Plant litter plays a key role in nutrient cycling and community organization in grassland ecosystems. Litter can have important consequences on recruitment of plant species through modification of biological, physical, and chemical features of microenvironment. Plant litter offers a major input of organic matter to the soil which modifies soil chemistry, hence impacts nutrient cycling. At early stages of litter decomposition, a particular amount of carbon is transporting to the soil nutrient pool. In terrestrial ecosystems, plant litter regulating biogeochemical cycles, maintain soil fertility, nutrient availability, and therefore influence plant growth, diversity, composition, structure, and productivity. Litter can also impact plant above net plant productivity and below net plant productivity in grassland ecosystem. Plant litter accumulation and decomposition can impact plant species composition and community structure through temperature, light and nutrient availability. The effects of plant litter on vegetation may be negative, positive or neutral due vegetation variability, study duration, habitat, latitude, quantity and quality of litter. These diverse effects of plant litter on grassland ecosystem might be due to, management practice type, management intensity, climate type, timing, precipitation and soil nutrient pool etc. Current review attempts to describe prominent effects of plant litter on vegetation, seed germination, soil fertility, Productivity, species composition, community structure and mechanism in grassland ecosystem.  相似文献   

15.
The aim of this study was to understand how drought‐induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought‐induced die‐off, is being replaced by Holm‐oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and 13C solid‐state Nuclear Magnetic Resonance (CP‐MAS 13C NMR) to soils within areas of influence (defined as an surface with 2‐m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close‐chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below‐ground before above‐ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r‐strategic bacteria) further gives indications of how drought‐induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils.  相似文献   

16.
Eschen R  Hunt S  Mykura C  Gange AC  Sutton BC 《Fungal biology》2010,114(11-12):991-998
Foliar fungal endophytes are ubiquitous, but understudied symbionts of most plant species; relatively little is known about the factors affecting their occurrence, diversity and abundance. We tested the effects of soil nutrient content and arbuscular mycorrhizal (AM) colonization on the occurrence of foliar endophytic fungi in Cirsium arvense in two field studies. In the first study, we assessed relationships between soil moisture, organic matter, carbon and nitrogen content and plant water, nitrogen and carbon content and AM colonization and the occurrence of foliar endophytic fungal species. In the second study, we manipulated soil nutrient content and AM colonization of potted seedlings and identified differences in endophytic fungal species composition of the leaves and stems. The results reveal that endophytes can occur either more or less frequently, depending on soil nutrient and plant water content and AM colonization. We propose that these patterns were the result of differences in fungal growth responses to nutrient availability in the leaves, which can be affected by resources obtained from the soil or symbiotic fungi in the roots.  相似文献   

17.
本研究以系统仿真的方法对松嫩平原碱化草地植物-环境系统进行模拟。模型的系统变量包括植物种的地上、地下生物量,土壤水分、有机质、可溶性和交换性Na ̄+和Ca ̄++浓度和植物的凋落物生物量。模型所考虑的过程有:不同土壤碱化条件下的植物生长季节动态;土壤水、盐运动;植物的蒸腾作用;土壤表面的蒸发;凋落物的积累和分解;土壤有机质的积累和矿化;地下生物量对土壤持水和导水特性的控制作用,以及收获强度对系统平衡的影响等。模型成功地解释了植物生物量形成过程与环境之间的动态耦合、相关作用。模拟结果说明:与地下生物量密切相关的土壤非毛管孔隙度与土壤的碱化和脱碱过程有极强的相关作用,这种作用是通过改变土壤的饱和持水量来实现的。非毛管孔隙度随地下生物量增加.导致饱和含水量增加和脱碱作用加强。收获强度过大导致地下生物量的减少、非毛管孔隙度的减少和碱化作用的加强。  相似文献   

18.
I compared growth and arbuscular mycorrhizal fungal (AMF) colonization of two prairie grasses (Wild rye [Elymus canadensis] and Little bluestem [Schizachyrium scoparium]), an early‐ and a late‐dominating species in prairie restorations, respectively, grown in soil from restored prairies of differing age, soil characteristics, and site history. There were no consistent patterns between restoration age and soil inorganic nutrients or organic matter. The oldest restoration site had higher soil mycorrhizal inoculum potential (MIP) than 2‐ and 12‐year‐old restorations. However, MIP did not translate into actual colonization for two species grown in soils from the three restorations, nor did MIP relate to phosphorus availability. There were significant differences in root mass and colonization among Wild rye plants but not among Little bluestem plants grown in soils from the three restorations. Wild rye grown in 2‐year‐old restoration soil had significantly higher AMF colonization than when it was grown in soils from the 12‐ and 17‐year‐old restorations. Wild rye grown in 2‐year‐old restoration soil also had higher colonization than Little bluestem grown in 2‐ and 12‐year‐old restoration soils. Little bluestem had no significant correlations between shoot biomass, root biomass or colonization, and concentrations of soil P, total N, or N:P. However, for Wild rye, total soil N was positively correlated with root mass and negatively correlated with colonization, suggesting that in this species, mycorrhizae may affect N availability. Collectively, these results suggest that soil properties unrelated to restoration age were important in determining differences in growth and AMF colonization of two species of prairie grasses.  相似文献   

19.
Available phosphorus in lake sediments in The Netherlands   总被引:4,自引:3,他引:1  
Klapwijk  S. P.  Kroon  J. M. W.  Meijer  M -L. 《Hydrobiologia》1982,91(1):491-500
The amount of phosphorus available to algae in the sediments of four lakes in the western part of the Netherlands has been assessed by means of chemical extraction and bioassay techniques. In addition to direct chemical sediment analyses, extractions were carried out with an NTA column method and a stepwise NH4 Cl-NaOH-HCI shaking method, the latter supposedly separating the weakly bound, the Fe- and Al-bound and the Ca-bound phosphates in the sediments. Bioassays, with sediment as the sole source of P, were made withScenedesmus quadricauda in modified Skulberg's 28 medium to determine the amount of phosphates available to algae.The average total P concentration of the sediments varied from 0.8 to 3.6 mg P g–1 dry wt and correlated well with the net external P loading of the lakes. Uptake of P by algae in the bioassays varied from 0.4 to 36% — while NTA extracted 36–69% of the total P. The ratio NH4Cl extracted/ NaOH extracted/ HCI extracted phosphates is different from lake to lake, although in all lakes the highest extractions (27–62% of total P) are found in the NaOH fraction. However, in the peaty sediments of these lakes, the NaOH step extracted not only the Fe- and Al-bound phosphates but, also, large amounts of humus compounds. Hence, this fraction also contains non-available organic P.The results are related to soil type and chemical characteristics of the sediments, and compared with data from other authors. A positive correlation was found between phosphate available to algae and NTA- and NaOH-extractable P, but the correlation with total phosphorus was higher. Moreover, algal-extractable P proved to be positively correlated with total iron and clay content and negatively with the amount of organic matter.It is concluded that the sediments in the investigated lakes show great variability and that the chemical extraction techniques cannot replace the bioassays to assess the amount of phosphorus available to algae.  相似文献   

20.
松嫩平原碱化草地植物-环境系统的仿真模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
 本研究以系统仿真的方法对松嫩平原碱化草地植物—环境系统进行模拟。模型的系统变量包括植物种的地上、地下生物量,土壤水分、有机质。可溶性和交换性Na+和Ca++浓度和植物的凋落物生物量。模型所考虑的过程有:不同土壤碱化条件下的植物生长季节动态;土壤水、盐运动;植物的蒸腾作用;土壤表面的蒸发;凋落物的积累和分解;土壤有机质的积累和矿化;地下生物量对土壤持水和导水特性的控制作用,以及收获强度对系统平衡的影响等。模型成功地解释了植物生物量形成过程与环境之间的动态耦合、相关作用。模拟结果说明:与地下生物量密切相关的土壤非毛管孔隙度与土壤的碱化和脱碱过程有极强的相关作用,这种作用是通过改变土壤的饱和持水量来实现的。非毛管孔隙度随地下生物量增加,导致饱和含水量增加和脱碱作用加强。收获强度过大导致地下生物量的减少、非毛管孔隙度的减少和碱化作用的加强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号