首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In West Siberia, the whole species range of the common shrew (Sorex araneus L.) is shared by two parapatric chromosome races — Novosibirsk and Tomsk. These races form a hybrid zone with each other. In addition, on the western margin of the range there is a hybrid zone between the Novosibirsk race and the Uralian race Serov, and in the east, the Tomsk race forms a hybrid zone with the East Siberian race Strelka hybrid. The structures of the three hybrid zones are very different and depend on the karyotypic state of the races in contact. A comparative analysis of the hybrid zones between the chromosome races of the common shrew in West Siberia is discussed together with the role of these zones in maintaining variability in natural populations.  相似文献   

2.
Chromosomal races of the common shrew differ in sets of metacentric chromosomes and on contact may produce hybrids with extraordinarily complex configurations at meiosis I that are associated with reduced fertility. There is an expectation that these may be some of the most extreme tension zones available for study and therefore are of interest as potential sites for reproductive isolation. Here, we analyse one of these zones, between the Novosibirsk race (characterized by metacentrics go, hn, ik, jl, mp and qr) and the Tomsk race (metacentrics gk, hi, jl and mn and acrocentrics o, p, q and r), which form hybrids with a chain-of-nine (CIX) and a chain-of-three (CIII) configuration at meiosis I. At the Novosibirsk-Tomsk hybrid zone, the CIX chromosomes form clines of 8.53 km standardized width on average, whereas the cline for the CIII chromosomes was 52.83 km wide. The difference in these cline widths fits with the difference in meiotic errors expected with the CIX and CIII configuration, and we produce estimates of selection against hybrids with these types of configurations, which we relate to dispersal and age of the hybrid zone. The hybrid zone is located at the isocline at 200 m altitude above sea level; this relationship between the races and altitude is suggested at both coarse and fine scales. This indicates adaptive differences between the races that may in turn have been promoted by the chromosome differences. Thus, the extreme chromosomal divergence between the Novosibirsk and Tomsk may be associated with genic differentiation, but it is still striking that, despite the large chromosomal differences, reproductive isolation between the Novosibirsk and Tomsk races has not occurred.  相似文献   

3.
In Western Siberia, most boundaries between common shrew chromosomal races have been found to pass along the banks of rivers, mainly those flowing in the meridional direction. The races Serov and Novosibirsk co-inhabited the right bank of the Irtysh. The easternmost point of the Novosibirsk race has been found on the middle Yenisei River, while the race Tomsk in this area was only on the right (eastern) bank.  相似文献   

4.
Six chromosome races of the common shrew occur in Sweden, each with its characteristic arm combination of metacentric chromosomes. G-banded karyotypes were analysed from 201 common shrews in 14 localities of the northern hybrid zone in Sweden. Analyses from another 64 shrews from seven localities outside the hybrid zone w ere included for comparison. The shrews were classified with respect to karyotype into any of five categories: (1) Abisko race, (2) Sidensjö race, (3) hybrids between the parental races, (4) pseudohybrids (a type of hybrid), and (5) AT with all race-specific chromosomes (h, i, n, o, p, r) present as telocentrics. Hybrids occurred at a frequency close to Hardy-Weinberg expectation in the centre of the hybrid zone. Chromosome polymorphism of Robertsonian type was common and 43 different karyotypes were found among the specimens studied. The polymorphism involved six metacentric pairs in the Abisko and three in the Sidensjö race. The frequency of the Sidensjö race-specific metacentric hi decreased and the frequency of the Abisko race-specific hn increased from south-west to north-east along a transect across the hybrid zone. The number of race-specific telocentrics reached a peak 13 km north-east of the hi-hn cline centre. The estimated standardized cline width for chromosomes hi and hn was 16.0 km. The extension of the Sidensjö race is comparatively narrow [c. 50 km in the region of the investigation), and it is regarded to be a 'hybrid race' between the Uppsala race, which colonized Sweden from the south-west, and the Abisko race which arrived from the north-east after the most recent glaciation. The origin of the Sidensjö race is thus less than 10 000 years old, because earlier this area was covered by glacial ice.  相似文献   

5.
Morphometric differentiation between the Manturovo and Serov chromosome races of the common shrewSorex araneus Linnaeus, 1758, in Northeastern European Russia was studied using 27 measurements of the skull in 953 specimens. Discriminant and cluster analyses showed that shrews belonging to different chromosome races were well differentiated. No regular dependence between morphological changes of the skull and longitude was observed and there was no association between geographic and morphological distance. Multiple regression analysis revealed that 24.7% of the total morphological variance could be explained by seven geoclimatic variables. We suggest that karyotypic divergence may play a significant role in differentiating skull morphology in the Manturovo and Serov races of the common shrew. We also suppose that selection may affect the skull morphology of different chromosome races in this species.  相似文献   

6.
The Moscow and Seliger chromosomal races of the common shrew differ by Robertsonian fusions and possibly whole‐arm reciprocal translocations (WARTs) such that their F1 hybrids produce a chain‐of‐eleven configuration at meiosis I and are expected to suffer substantial infertility. Of numerous hybrid zones that have been described in the common shrew, those between the Moscow and Seliger races involve the greatest chromosomal difference. We collected 211 individuals from this zone to generate a total dataset of 298 individuals from 187 unique global positioning system (GPS) locations within the vicinity of interracial contact. We used a geographic information system (GIS) to map the location of the hybrid zone, which follows a direct route between two lakes, as would be anticipated from tension zone theory. Even within the central area of the hybrid zone, there is a much higher frequency of pure race individuals than hybrid, making this a clear example of a bimodal zone in the sense of Jiggins & Mallet (2000) . The zone runs through good habitat for common shrews, but nevertheless it is very narrow (standard cline widths: 3–4 km), as would be anticipated from low hybrid fitness. There is clear potential for an interruption to gene flow and build‐up of reproductive isolation. As found in some other hybrid zones, there is a high frequency of novel genetic variants, in this case, new chromosomal rearrangements. Here, we report a de novo Robertsonian fission and a de novo reciprocal translocation, both for the first time in the common shrew. There is an extraordinarily high frequency of de novo mutations recorded in F1 hybrids in the zone and we discuss how chromosomal instability may be associated with such hybrids. The occurrence of a de novo Robertsonian fission is of considerable significance because it provides missing evidence that fissions are the basis of the novel acrocentric forms found and apparently selected for in certain common shrew hybrid zones.  相似文献   

7.
The contact zone between Moscow and Western Dvina chromosomal races of common shrew Sorex araneus L. at the south of the Valdai Hights was traced over a distance of 20 km. Within this, close to parapatric, contact zone of chromosomal races the width of sympatry zone was about 500 m (the narrowest among currently known hybrid zones), and the proportion of hybrids was 24.3%. It was shown that in bimodal hybrid zones between chromosomal races of common shrew the width of sympatry zones varied from 0.5 to 13 km. This width does not correlate with the cytogenetic features of the hybrids, and seems to be determined by competitive relations between the races. The hybrid proportion is determined by the type of hybrid heterozygosity, and decreased in the race sympatry zone from 33–40 to 21.5–25.2%. The decrease of the hybrid proportion can be associated with the abnormal fertility of either the first generation, or the backcross hybrids.  相似文献   

8.
The contact points of four karyotypic races (St. Petersburg, Moscow, Seliger and West Dvina) of the common shrew Sorex araneus L. were studied at the Valdai Hills (European Russia) in an area unimpeded by geographic barriers. The populations of the races are separated by narrow hybrid zones that represent the most complex heterozygous hybrid karyotypes. At these points of contact, the morphometric differentiation of karyotype races was examined in 12 cranial measurements in 190 shrews of a known karyotype. A comparison of the mean values in studied samples of immature shrews revealed statistically significant differences and the correlation of some measurements which describe the level of musculus temporalis. It has been proposed that morphometric differences in the karyotypic races were preserved and accumulated because of a 50% reduction of the frequencies of hybrids. The deviation from the Hardy-Weinberg ration in the frequencies of the genotype and haploid sets of chromosomes in the hybrid zones can be attributed to a number of fatalities of hybrid embryos or the nonrandom mating of karyotypic races. The ethological isolation might arise in the evolution of some karyotypic races from the reduced fitness of the hybrids.  相似文献   

9.
Two chromosome races of common shrew, Moscow and Seliger, differ in the arm combination in 11 diagnostic chromosomes (Robertsonian metacentrics/acrocentrics). Homozygotes of both pure races, simple Robertsonian heterozygotes of Seliger race, and complex heterozygotes (F1 hybrids) were detected in the found earlier hybrid zone of these races, in the spring before the breeding season. The g/o heterozygote was first discovered in race Seliger, whose chromosome formula typically contains acrocentrics g and o. The m/q heterozygote was recorded for the second time. Meiosis was studied in 16 males representing five detected karyotypic categories. No abnormal in pairing of homologs in either sex trivalent common for the species (XY1Y2) or autosome trivalents (g/o and m/q) was detected at diakinesis-metaphase I. Two hybrids displayed a theoretically expected and unimpaired meiotic configuration in a form of a very long chain comprising 11 monobrachial homologs (g/gm/mq/qp/pr/rk/ki/ih/hn/no/o). The results are discussed in terms of hypotheses on fertility of complex heterozygotes and limited gene flow in hybrid zone.  相似文献   

10.
Several chromosome races of the mesquite lizard, Sceloporus grammicus complex, hybridize at localities in central Mexico. In most cases, the hybridizing populations are delineated by centric fissions at one or more of the macrochromosomes. One notable exception is the Tulancingo hybrid zone between the F5 and FM2 cytotypes. In addition to fission and/or inversion differences at chromosomes 1, 3, 4, and 6, these races differ by a complex rearrangement of chromosome 2, which carries the nucleolus-organizer region in this species. The meiotic consequences of heterozygosity at this chromosome were examined in males to assess the potential for this chromosome to contribute to the dynamics of the hybrid zone. Chromosomal analysis revealed several putative F1 hybrids and confirmed the production of nonparental chromosomal morphologies through recombination. Pachytene analysis revealed meiotic pairing difficulties associated with chromosome 2 in males heterozygous for the parental chromosomal morphologies. Significant aneuploidy is expected because of random disjunction of the chromosome-2 elements. As a result, these males likely suffer reduced fertiliity and fitness. In contrast, males heterozygous for recombinant chromosomal morphologies displayed low levels of meiotic irregularities and presumably exhibit higher fertility than individuals heterozygous for parental morphologies. It is hypothesized that the recombinant phenotypes facilitate gene flow between the F5 and FM2 cytotypes.  相似文献   

11.
A multivariate study of variation in mandible dimensions was conducted to determine whether common shrews of different karyotypic race (Aberdeen, Oxford, Hermitage) in Britain differ in morphology. Differences between samples from north and south Britain suggest that geography is more important than karyotype as a morphological determinant. However, the distinctiveness of hybrids in the 'Oxford-Hermitage' hybrid zone raises the possibility that there are genetic differences between the races.  相似文献   

12.
Karyotypes of the Petchora and Kirillov chromosomal races of the common shrew differ by six Robertsonian metacentrics with monobrachial homology, such that interracial F1 hybrids produce a ring-of-six configuration at meiosis I and are expected to suffer infertility. Mapping of 52 karyotyped individuals by using a unique global positioning system (GPS) revealed that the Kirillov-Petchora hybrid zone is positioned close to the river Mezen, which separated these races, and so may limit the migration of shrews across the contact zone. Although the population density of shrews was found to be markedly different with respect to habitats, the zone runs through a mosaic of habitats that are similar for both the Petchora and the Kirillov sides. This is one of the narrowest chromosomal hybrid zones among those studied in Sorex araneus with a standard cline width of about 1 km. The center of the cline is located on a bank occupied by the Petchora race at a distance of 0.4 km away from a riverine barrier. Interestingly, both the Kirillov race and hybrid individuals were found on a small island in the middle of a river fully flooded each spring. The frequencies of karyotypic variants allow us to consider the zone as an example of a bimodal zone. New Robertsonian and de novo whole-arm reciprocal translocations (WART) chromosomal variants found in the zone could be regarded as evidences of current evolutionary process in chromosomal hybrid zones.  相似文献   

13.
While hybridization has been reported for a large number of primate taxa, there is a general lack of data on hybrid morphology for wild individuals with known genetic ancestry. A confirmed hybrid zone for the closely related Neotropical primates Alouatta palliata and A. pigra has provided a unique opportunity to study primate hybrid morphological variation. Here we used molecular evidence based on mitochondrial, Y‐chromosome, and autosomal data to assess hybrid ancestry. We conducted univariate and multivariate statistical comparisons of morphometric data collected from individuals both outside and within the hybrid zone in Tabasco, Mexico. Our results show that of all the hybrids detected (N = 128), only 12% of them were approximately genetically intermediate, and none of them were first generation hybrids. Univariate pairwise comparisons among parental individuals, multigenerational backcrossed hybrids, and intermediate hybrids showed that overall, multigenerational backcrossed hybrids resemble the parental species with which they share most of their alleles. Conversely, intermediates were highly variable. Similarly, principal component analysis depicts an overlap between the parental species and their backcrosses when considering overall morphological differences. Finally, discriminant function analysis of the morphological variables was overall unreliable for classifying individuals into their assigned genotypic classes. Taken together, our results suggest that primate natural hybridization studies should incorporate molecular methods for determining ancestry, because morphology may not always be a reliable indicator of hybrid status. Hybrid zones could comprise a large number of multigenerational backcrossed hybrids that are indistinguishable from the parental species. The implications for studying hybridization in the primate fossil record are discussed. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The skulls of shrews of genus Sorex from eight samplings from the European part of Russia and two from the vicinity of Novosibirsk were compared. The characteristics were identified using 22 marks on the axial skull. It was found that the centroid size differs significantly in the common and Laxmann’s shrews S. caecutiens and the pygmy shrew S. minutus, while for selected marks, the common and Laxmann’s, as well as pygmy, shrews were significantly different in form, but the differences were very small between Laxmann’s and pygmy shrews. The characteristic features of the biology of the shrews Sorex are discussed, which may contribute to understanding the general laws of the morphological evolution of the genus.  相似文献   

15.
The common shrewSorex araneus Linnaeus, 1758 is subject to intense chromosomal polymorphism. About 65 chromosome races are presently known. One of these chromosome races (the Valais race) is karyologically, morphologically, biochemically, and genetically clearly distinct from all other chromosome races of the species. Recent studies of hybrid zones between the Valais race and other chromosome races in the Swiss and French Alps add further strong evidence for the specific taxonomic status of the Valais race. Chromosomes and diagnostic protein markers reveal sharp frequency clines and strong heterozygote deficits. In one hybrid zone, the maintenance of the strong genetic differentiation of the hybridizing taxa was confirmed by a study with autosomal microsatellites indicating minimal gene flow. A microsatellite marker on the Y-chromosome showed complete absence of male mediated gene flow suggesting hybrid male sterility. To clarify the taxonomic status of this taxon, additional analyses were conducted. A morphometric analysis of the mandible indicated the Valais race is morphologically as distinct from neighbouring chromosome races ofS. araneus as from other relatedSorex species. In a phylogeny based on complete mitochondrial DNA cytochromeb gene sequences, the Valais race clearly appears as the sister taxon to all other races ofS. araneus. Therefore, the chromosome race Valais ofS. araneus herein is elevated to specific status and the nameSorex antinorii Bonaparte, 1840 is applied.  相似文献   

16.
Two parapatric chromosomal races of the common shrew (Sorex araneus) in Poland differ in their complement of metacentric arm combinations: hk, io, gr, nm (race IV), and hi, ko, gm, np (race II). In hybrids, these eight race-diagnostic metacentrics form two randomly segregating complexes. The first complex (C1) occurs in the form of a ring configuration ok/kh/hi/io, or a chain o/ok/kh/hi/i (when there is Robertsonian polymorphism of the element io). The second complex (C2) always takes the form of a six-element chain configuration r/rg/gm/mn/np/p. The C2 complex may be shortened to five or even four elements, when acrocentrics g, m and n are present. In the contact zone we found shrews of pure races (race II or IV), as well as hybrids with C1 or C2 complexes, and recombinants hi, ko, gr, nm. Complex heterozygotes are likely to suffer reduced fertility due to malsegregation at meiosis. However, the C1 hybrids with ring configurations occur with a high frequency throughout the contact zone. This suggest that their fitness is only slightly lowered relative to pure race individuals, in contrast to the hybrids with C1 or C2 chain configurations, which presumably have a more heavily reduced fertility. On the other hand, at the center of the zone there is a high proportion of recombinants, which, being chromosomal homozygotes, should display normal meiotic segregation. Furthermore, the high frequencies of recombinants within the contact zone should facilitate gene flow between the races. The occurrence of recombinants plays a similar role as the appearance of the maximum frequencies of acrocentric homozygotes described in several contact zones of S. araneus.  相似文献   

17.
Combination of different dispersal modes may itself, without external obstacles, lead to the appearance of subdivided populations and maintain the existence of independent population systems. The common shrew, a mammal convenient for studying different levels of intraspecific differentiation, was the object of the study. Empirical data have been used for simulation taking into account the change of dispersal modes in the population area. The obtained results agree with empirical data on the distribution of races and hybrids in the hybrid zone of chromosome races Moscow and Seliger. Change of the dispersal mode may maintain independent population dynamics and, in the case of chromosome races, prevent the migration of parental individuals into the territory of the other race.  相似文献   

18.
Microsatellites are used to unravel the fine-scale genetic structure of a hybrid zone between chromosome races Valais and Cordon of the common shrew ( Sorex araneus ) located in the French Alps. A total of 269 individuals collected between 1992 and 1995 was typed for seven microsatellite loci. A modified version of the classical multiple correspondence analysis is carried out. This analysis clearly shows the dichotomy between the two races. Several approaches are used to study genetic structuring. Gene flow is clearly reduced between these chromosome races and is estimated at one migrant every two generations using R -statistics and one migrant per generation using F -statistics. Hierarchical F - and R -statistics are compared and their efficiency to detect inter- and intraracial patterns of divergence is discussed. Within-race genetic structuring is significant, but remains weak. F ST displays similar values on both sides of the hybrid zone, although no environmental barriers are found on the Cordon side, whereas the Valais side is divided by several mountain rivers. We introduce the exact G -test to microsatellite data which proved to be a powerful test to detect genetic differentiation within as well as among races. The genetic background of karyotypic hybrids was compared with the genetic background of pure parental forms using a CRT–MCA. Our results indicate that, without knowledge of the karyotypes, we would not have been able to distinguish these hybrids from karyotypically pure samples.  相似文献   

19.
Genetic studies have revealed a large degree of previously unappreciated diversity in morphologically conserved taxa. To understand the implications of this phenomenon, studies investigating the processes responsible for generating and maintaining functional and neutral diversity within such taxa are needed. With this aim, patterns of differentiation across a contact zone between two catchment‐specific, and genetically and subtly morphologically distinguishable, races of the onychophoran Euperipatoides rowelli Reid, 1996 at the Tallaganda State Forest study system, Australia, were quantified using diagnostic body‐pattern differences, microsatellite markers, and the cytochrome c oxidase subunit I (COI) mitochondrial gene. These data were used to test whether hybridization occurred, and whether the reduced survival of hybrids compared with non‐hybrids and/or assortative mating were potentially important factors in retaining the divergence between these races, which probably arose during isolation in Pleistocene glacial refuges. It was found that hybrids at the focal contact zone do not have reduced embryo‐to‐adult survival compared with non‐hybrids, and that races apparently freely interbreed without substantial assortative mating, consistent with little or no cost to hybridization. Nonetheless, at their respective transect ends the races remain distinct. This phenomenon was attributed to the elevated location of the contact zone, which is likely to make it poor habitat for E. rowelli, and thus may restrict dispersal and gene flow. There was also tentative evidence for a relaxed selection against hybridization in the hybrid zone, and the relative importance of these two explanations will require separate investigation. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 589–602.  相似文献   

20.
In Central Poland, two similar chromosome races of the common shrewSorex araneus Linnaeus, 1758 were earlier described: Drnholec race (arm combinationsgm, hi, ko, nr) and Stobnica race (gm, hi, ko, np). Great similarity in size and G-banding patterns between thenr andnp metacentrics leave open to doubt the actual existence of both races in Poland. The present study, which is based on good quality karyotypes of common shrews from 18 sites, showed the presence of thenr arm combination. There is therefore strong evidence that thenp arm combination was wrongly described and thus the Stobnica race should not be considered valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号