首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In most HCO(3)(-)-secreting epithelial tissues, SLC26 Cl(-)/HCO(3)(-) transporters work in concert with the cystic fibrosis transmembrane conductance regulator (CFTR) to regulate the magnitude and composition of the secreted fluid, a process that is vital for normal tissue function. By contrast, CFTR is regarded as the only exit pathway for HCO(3)(-) in the airways. Here we show that Cl(-)/HCO(3)(-) anion exchange makes a major contribution to transcellular HCO(3)(-) transport in airway serous cells. Real-time measurement of intracellular pH from polarized cultures of human Calu-3 cells demonstrated cAMP/PKA-activated Cl(-)-dependent HCO(3)(-) transport across the luminal membrane via CFTR-dependent coupled Cl(-)/HCO(3)(-) anion exchange. The pharmacological and functional profile of the luminal anion exchanger was consistent with SLC26A4 (pendrin), which was shown to be expressed by quantitative RT-PCR, Western blot, and immunofluorescence. Pendrin-mediated anion exchange activity was confirmed by shRNA pendrin knockdown (KD), which markedly reduced cAMP-activated Cl(-)/HCO(3)(-) exchange. To establish the relative roles of CFTR and pendrin in net HCO(3)(-) secretion, transepithelial liquid secretion rate and liquid pH were measured in wild type, pendrin KD, and CFTR KD cells. cAMP/PKA increased the rate and pH of the secreted fluid. Inhibiting CFTR reduced the rate of liquid secretion but not the pH, whereas decreasing pendrin activity lowered pH with little effect on volume. These results establish that CFTR predominately controls the rate of liquid secretion, whereas pendrin regulates the composition of the secreted fluid and identifies a critical role for this anion exchanger in transcellular HCO(3)(-) secretion in airway serous cells.  相似文献   

2.
Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl(-) channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and DeltaF508-CFTR in the apical membrane and decreased CFTR-mediated Cl(-) secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells.  相似文献   

3.
The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ~140 mM HCO(3)(-) or more, mouse and rat ducts secrete ~40-70 mM HCO(3)(-). Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO(3)(-) secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl(-)/Cl(-) exchange and electroneutral Cl(-)/HCO(3)(-) exchange. gpSlc26a6 in Xenopus oocytes mediated Cl(-)/Cl(-) exchange and bidirectional exchange of Cl(-) for oxalate and sulfate, but Cl(-)/HCO(3)(-) exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl(-), oxalate, and sulfate transport but no detectable Cl(-)/HCO(3)(-) exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of (36)Cl(-) influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO(3)(-) secretion in species that share a high HCO(3)(-) secretory output.  相似文献   

4.
Sperm capacitation is required for fertilization and involves several ion permeability changes. Although Cl(-) and HCO(3)(-) are essential for capacitation, the molecular entities responsible for their transport are not fully known. During mouse sperm capacitation, the intracellular concentration of Cl(-) ([Cl(-)](i)) increases and membrane potential (Em) hyperpolarizes. As in noncapacitated sperm, the Cl(-) equilibrium potential appears to be close to the cell resting Em, opening of Cl(-) channels could not support the [Cl(-)](i) increase observed during capacitation. Alternatively, the [Cl(-)](i) increase might be mediated by anion exchangers. Among them, SLC26A3 and SLC26A6 are good candidates, since, in several cell types, they increase [Cl(-)](i) and interact with cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) channel present in mouse and human sperm. This interaction is known to be mediated and probably regulated by the Na(+)/H(+) regulatory factor-1 (official symbol, SLC9A3R1). Our RT-PCR, immunocytochemistry, Western blot, and immunoprecipitation data indicate that SLC26A3, SLC26A6, and SLC9A3R1 are expressed in mouse sperm, localize to the midpiece, and interact between each other and with CFTR. Moreover, we present evidence indicating that CFTR and SLC26A3 are involved in the [Cl(-)](i) increase induced by db-cAMP in noncapacitated sperm. Furthermore, we found that inhibitors of SLC26A3 (Tenidap and 5099) interfere with the Em changes that accompany capacitation. Together, these findings indicate that a CFTR/SLC26A3 functional interaction is important for mouse sperm capacitation.  相似文献   

5.
Members of the SLC26 transporter family play an essential role in several epithelial functions, as revealed by diseases associated with mutations in members of the family. Several members were shown to function as Cl(-) and HCO(3)(-) transporters that likely play an important role in epithelial Cl(-) absorption and HCO(3)(-) secretion. However, the mechanism of most transporters is not well understood. SLC26A7 is a member of the SLC26 transporter family reported to be expressed in the basolateral membrane of the cortical collecting duct and parietal cells and functions as a coupled Cl(-)/HCO(3)(-) exchanger. In the present work we examined the transport properties of SLC26A7 to determine its transport characteristics and electrogenicity. We found that when expressed in Xenopus oocytes or HEK293 cells SLC26A7 functions as a pH(i)-regulated Cl(-) channel with minimal OH(-)/HCO(3)(-) permeability. Expression of SLC26A7 in oocytes or HEK293 cells generated a Cl(-) current with linear I/V and an instantaneous current that was voltage- and time-independent. Based on measurement of reversal potential the selectivity of SLC26A7 is NO(3)(-)>Cl(-)=Br(-)=I(-)>SO(4)(2-)=Glu(-), although I(-) partially inhibited the current. Incubating the cells with HCO(3)(-) or butyrate acidified the cytosol and increased the selectivity of SLC26A7 for Cl(-). Measurement of membrane potential and pH(i) showed minimal OH(-) and HCO(3)(-) transport by SLC26A7 when the cells were incubated in Cl(-)-containing or Cl(-)-free media. The activity of SLC26A7 was inhibited by all inhibitors of anion transporters tested, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, diphenylamine-2-carboxylic acid, and glybenclamide. These findings reveal that SLC26A7 functions as a unique Cl(-) channel that is regulated by intracellular H(+).  相似文献   

6.
We investigated the possible functional‐ and physical protein‐interactions between two airway Cl? channels, SLC26A9 and CFTR. Bronchial CFBE41o‐ cell lines expressing CFTRWT or CFTRΔF508 were transduced with SLC26A9. Immunoblots identified a migrating band corresponding to SLC26A9 present in whole‐cell lysates as on apical membrane of cells grown on polarized filters. CFTR levels were increased by the presence of SLC26A9 in both CFTRWT and CFTRΔF508 cell lines. In CFBE41o‐ cells and CFBE41o‐/CFTRWT cells transduced with SLC26A9, currents associated to the protein expression were not detected. However, the forskolin (FK)‐stimulated currents were enhanced in SLC26A9‐transduced cells compared to control cells. Therefore, the presence of SLC26A9 resulted in an increase in CFTR activity (same % of CFTR(inh)‐172 or GlyH‐101 inhibition in both groups). In CFBE41o‐/CFTRΔF508 cells transduced with SLC26A9 (at 27°C), a current associated to the protein expression was also lacking. FK‐stimulated currents and level of CFTR(inh)‐172 inhibition were not different in both groups. The presence of SLC26A9 in Xenopus oocytes expressing CFTR also enhanced the FK‐stimulated currents as compared to oocytes expressing CFTR alone. This stimulation was mostly linked to CFTR. An enhancement of FK‐stimulated currents was not found in oocytes co‐expressing SLC26A9 and CFTRΔF508. In conclusion, in both protein expression systems used, SLC26A9 stimulates CFTR activity but not that of CFTRΔF508. Our co‐immunoprecipitation studies demonstrate a physical interaction between both anion channels. We propose as an alternative hypothesis (not exclusive) to the known SLC26A9‐STAS domain/CFTR interaction, that SLC26A9 favors the biogenesis and/or stabilization of CFTR, leading to stimulated currents. J. Cell. Physiol. 226: 212–223, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-mediated Cl(-) transport across the apical membrane of airway epithelial cells is implicated in the pathophysiology of CF lungs. A strategy to compensate for this loss is to augment Cl(-) transport through alternative pathways. We report here that partial correction of this defect could be attained through the incorporation of artificial anion channels into the CF cells. Introduction of GL-172, a synthetic analog of squalamine, into CFT1 cells increased cell membrane halide permeability. Furthermore, when a Cl(-) gradient was generated across polarized monolayers of primary human airway or Fischer rat thyroid cells in an Ussing chamber, addition of GL-172 caused an increase in the equivalent short-circuit current. The magnitude of this change in short-circuit current was ~30% of that attained when CFTR was maximally stimulated with cAMP agonists. Patch-clamp studies showed that addition of GL-172 to CFT1 cells also increased whole cell Cl(-) currents. These currents displayed a linear current-voltage relationship and no time dependence. Additionally, administration of GL-172 to the nasal epithelium of transgenic CF mice induced a hyperpolarization response to perfusion with a low-Cl(-) solution, indicating restoration of Cl(-) secretion. Together, these results demonstrate that in CF airway epithelial cells, administration of GL-172 is capable of partially correcting the defective Cl(-) secretion.  相似文献   

8.
J Xie  M L Drumm  J Zhao  J Ma    P B Davis 《Biophysical journal》1996,71(6):3148-3156
The cardiac isoform of the cystic fibrosis transmembrane conductance regulator (CFTR) is a splice variant of the epithelial CFTR, with lacks 30 amino acids encoded by exon 5 in the first intracellular loop. For examination of the role of exon 5 in CFTR channel function, a CFTR deletion mutant, in which exon 5 was removed from the human epithelial CFTR, was constructed. The wild type and delta exon5 CFTR were expressed in a human embryonic kidney cell line (293 HEK). Fully mature glycosylated CFTR (approximately 170 kDa) was immunoprecipitated from cells transfected with wild type CFTR cDNA, whereas cells transfected with delta exon5 CFTR express only a core-glycosylated from (approximately 140 kDa). The Western blot test performed on subcellular membrane fractions showed that delta exon5 CFTR was located in the intracellular membranes. Neither incubation at lower temperature (26 degrees C) nor stimulation of 293 HEK cells with forskolin or CPT-cAMP caused improvement in glycosylation and processing of delta exon5 CFTR proteins, indicating that the human epithelial CFTR lacking exon5 did not process properly in 293 HEK cells. On incorporation of intracellular membrane vesicles containing the delta exon5 CFTR proteins into the lipid bilayer membrane, functional phosphorylation- and ATP-dependent chloride channels were identified. CFTR channels with an 8-pS full-conductance state were observed in 14% of the experiments. The channel had an average open probability (Po) of 0.098 +/- 0.022, significantly less than that of the wild type CFTR (Po = 0.318 +/- 0.028). More frequently, the delta exon5 CFTR formed chloride channels with lower conductance states of approximately 2-3 and approximately 4-6 pS. These subconductance states were also observed with wild type CFTR but to a much lesser extent. Average Po for the 2-3-pS subconductance state, estimated from the area under the curve on an amplitude histogram, was 0.461 +/- 0.194 for delta exon5 CFTR and 0.332 +/- 0.142 for wild type (p = 0.073). The data obtained indicate that deleting 30 amino acids from the first intracellular loop of CFTR affects both processing and function of the CFTR chloride channel.  相似文献   

9.
The bicyclic fatty acid lubiprostone (formerly known as SPI-0211) activates two types of anion channels in A6 cells. Both channel types are rarely, if ever, observed in untreated cells. The first channel type was activated at low concentrations of lubiprostone (<100 nM) in >80% of cell-attached patches and had a unit conductance of approximately 3-4 pS. The second channel type required higher concentrations (>100 nM) of lubiprostone to activate, was observed in approximately 30% of patches, and had a unit conductance of 8-9 pS. The properties of the first type of channel were consistent with ClC-2 and the second with CFTR. ClC-2's unit current strongly inwardly rectified that could be best fit by models of the channel with multiple energy barrier and multiple anion binding sites in the conductance pore. The open probability and mean open time of ClC-2 was voltage dependent, decreasing dramatically as the patches were depolarized. The order of anion selectivity for ClC-2 was Cl > Br > NO(3) > I > SCN, where SCN is thiocyanate. ClC-2 was a "double-barreled" channel favoring even numbers of levels over odd numbers as if the channel protein had two conductance pathways that opened independently of one another. The channel could be, at least, partially blocked by glibenclamide. The properties of the channel in A6 cells were indistinguishable from ClC-2 channels stably transfected in HEK293 cells. CFTR in the patches had a selectivity of Cl > Br > NO(3) congruent with SCN congruent with I. It outwardly rectified as expected for a single-site anion channel. Because of its properties, ClC-2 is uniquely suitable to promote anion secretion with little anion reabsorption. CFTR, on the other hand, could promote either reabsorption or secretion depending on the anion driving forces.  相似文献   

10.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

11.
The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the apical plasma membrane. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the DeltaF508 mutation reduces the half-life of DeltaF508-CFTR in the apical plasma membrane. Because DeltaF508-CFTR retains some Cl(-) channel activity, increased expression of DeltaF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued DeltaF508-CFTR that lead to the decreased apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the DeltaF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.  相似文献   

12.
Previous reports point out to a functional relationship of the cystic fibrosis transmembrane conductance regulator (CFTR) and Ca(2+) activated Cl(-) channels (CaCC). Recent findings showing that TMEM16A forms the essential part of CaCC, prompted us to examine whether CFTR controls TMEM16A. Inhibition of endogenous CaCC by activation of endogenous CFTR was found in 16HBE human airway epithelial cells, which also express TMEM16A. In contrast, CFBE airway epithelial cells lack of CFTR expression, but express TMEM16A along with other TMEM16-proteins. These cells produce CaCC that is inhibited by overexpression and activation of CFTR. In HEK293 cells coexpressing TMEM16A and CFTR, whole cell currents activated by IMBX and forskolin were significantly reduced when compared with cells expressing CFTR only, while the halide permeability sequence of CFTR was not changed. Expression of TMEM16A, but not of TMEM16F, H or J, produced robust CaCC, which that were inhibited by CaCCinh-A01 and niflumic acid, but not by CFTRinh-172. TMEM16A-currents were attenuated by additional expression of CFTR, and were completely abrogated when additionally expressed CFTR was activated by IBMX and forskolin. On the other hand, CFTR-currents were attenuated by additional expression of TMEM16A. CFTR and TMEM16A were both membrane localized and could be coimmunoprecipitated. Intracellular Ca(2+) signals elicited by receptor-stimulation was not changed during activation of CFTR, while ionophore-induced rise in [Ca(2+)](i) was attenuated after stimulation of CFTR. The data indicate that both CFTR and TMEM16 proteins are separate molecular entities that show functional and molecular interaction.  相似文献   

13.
The nature of involvement of the cystic fibrosis gene product (CFTR) in epithelial anion transport is not yet understood. We have expressed CFTR in Sf9 insect cells using the baculovirus expression vector system. Reactivity with antibodies against 12 different epitopes spanning the entire sequence suggested that the complete polypeptide chain was synthesized. Immunogold labeling showed localization to both cell-surface and intracellular membranes. Concomitant with CFTR expression, these cells exhibited a new cAMP-stimulated anion permeability. This conductance, monitored both by radioiodide efflux and patch clamping, strongly resembled that present in several CFTR-expressing human epithelial cells. These findings demonstrate that CFTR can function in heterologous nonepithelial cells and lend support to the possibility that CFTR may itself be a regulated anion channel.  相似文献   

14.
Aberrant HCO(3)(-) transport is a hallmark of cystic fibrosis (CF) and is associated with aberrant Cl(-)-dependent HCO(3)(-) transport by the cystic fibrosis transmembrane conductance regulator (CFTR). We show here that HCO(3)(-) current by CFTR cannot account for CFTR-activated HCO(3)(-) transport and that CFTR does not activate AE1-AE4. In contrast, CFTR markedly activates Cl(-) and OH(-)/HCO(3)(-) transport by members of the SLC26 family DRA, SLC26A6 and pendrin. Most notably, the SLC26s are electrogenic transporters with isoform-specific stoichiometries. DRA activity occurred at a Cl(-)/HCO(3)(-) ratio > or =2. SLC26A6 activity is voltage regulated and occurred at HCO(3)(-)/Cl(-) > or =2. The physiological significance of these findings is demonstrated by interaction of CFTR and DRA in the mouse pancreas and an altered activation of DRA by the R117H and G551D mutants of CFTR. These findings provide a molecular mechanism for epithelial HCO(3)(-) transport (one SLC26 transporter-electrogenic transport; two SLC26 transporters with opposite stoichiometry in the same membrane domain-electroneutral transport), the CF-associated aberrant HCO(3)(-) transport, and reveal a new function of CFTR with clinical implications for CF and congenital chloride diarrhea.  相似文献   

15.
16.
17.
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. We hypothesized that stimulation of Ca(2+) entry from the extracellular space could trigger a sustained Ca(2+) signal to activate Ca(2+)-dependent Cl(-) channels. Cytosolic [Ca(2+)](i) was measured in non-polarized human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Primary human CF and non-CF airway epithelial monolayers as well as Calu-3 monolayers were used to assess anion secretion. In vivo nasal potential difference measurements were performed in non-CF and two different CF mouse (DeltaF508 homozygous and bitransgenic gut-corrected but lung-null) models. Zinc and ATP induced a sustained, reversible, and reproducible increase in cytosolic Ca(2+) in CF and non-CF cells with chemistry and pharmacology most consistent with activation of P2X purinergic receptor channels. P2X purinergic receptor channel-mediated Ca(2+) entry stimulated sustained Cl(-) and HCO(3)(-) secretion in CF and non-CF epithelial monolayers. In non-CF mice, zinc and ATP induced a significant Cl(-) secretory response similar to the effects of agonists that increase intracellular cAMP levels. More importantly, in both CF mouse models, Cl(-) permeability of nasal epithelia was restored in a sustained manner by zinc and ATP. These effects were reversible and reacquirable upon removal and readdition of agonists. Our data suggest that activation of P2X calcium entry channels may have profound therapeutic benefit for CF that is independent of cystic fibrosis transmembrane conductance regulator genotype.  相似文献   

18.
Cystic fibrosis (CF) is caused by mutations in the gene producing the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a Cl(-) channel. Its dysfunction limits Cl(-) secretion and enhances Na+ absorption, leading to viscous mucus in the airway. Ca2+-activated Cl(-) channels (CaCCs) are coexpressed with CFTR in the airway surface epithelia. Increases in cytosolic Ca(2+) activate the epithelial CaCCs, which provides an alternative Cl(-) secretory pathway in CF. We developed a screening assay and screened a library for compounds that could enhance cytoplasmic Ca2+, activate the CaCC, and increase Cl(-) secretion. We found that spiperone, a known antipsychotic drug, is a potent intracellular Ca2+ enhancer and demonstrated that it stimulates intracellular Ca2+, not by acting in its well-known role as an antagonist of serotonin 5-HT2 or dopamine D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Spiperone activates CaCCs, which stimulates Cl(-) secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro and in CFTR-knockout mice in vivo. In conclusion, we have identified spiperone as a new therapeutic platform for correction of defective Cl(-) secretion in CF via a pathway independent of CFTR.  相似文献   

19.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl(-) channel properties, regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and nonepithelial cells. Because modulation of net NaCl reabsorption has important implications in extracellular fluid volume homeostasis and airway fluid volume and composition, we investigated whether this regulation was reciprocal by examining whether ENaC regulates CFTR. Co-expression of human (h) CFTR and mouse (m) alphabetagammaENaC in Xenopus oocytes resulted in a significant, 3.7-fold increase in whole-cell hCFTR Cl(-) conductance compared with oocytes expressing hCFTR alone. The forskolin/3-isobutyl-1-methylxanthine-stimulated whole-cell conductance in hCFTR-mENaC co-injected oocytes was amiloride-insensitive, indicating an inhibition of mENaC following hCFTR activation, and it was blocked by DPC (diphenylamine-2-carboxylic acid) and was DIDS (4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid)-insensitive. Enhanced hCFTR Cl(-) conductance was also observed when either the alpha- or beta-subunit of mENaC was co-expressed with hCFTR, but this was not seen when CFTR was co-expressed with the gamma-subunit of mENaC. Single Cl(-) channel analyses showed that both CFTR Cl(-) channel open probability and the number of CFTR Cl(-) channels detected per patch increased when hCFTR was co-expressed with alphabetagammamENaC. We conclude that in addition to acting as a regulator of ENaC, CFTR activity is regulated by ENaC.  相似文献   

20.
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity is important for fluid and electrolyte transport in many epithelia including the lung, the site of most cystic fibrosis-associated morbidity. CFTR is unique among ion channels in requiring ATP hydrolysis for its gating, suggesting that its activity is coupled to cellular metabolic status. The metabolic sensor AMP-activated kinase (AMPK) binds to and phosphorylates CFTR, co-localizes with it in various tissues, and inhibits CFTR currents in Xenopus oocytes (Hallows, K. R., Raghuram, V., Kemp, B. E., Witters, L. A. & Foskett, J. K. (2000) J. Clin. Invest. 105, 1711-1721). Here we demonstrate that this AMPK-CFTR interaction has functional implications in human lung epithelial cells. Pharmacologic activation of AMPK inhibited forskolin-stimulated CFTR short circuit currents in polarized Calu-3 cell monolayers. In whole-cell patch clamp experiments, the activation of endogenous AMPK either pharmacologically or by the overexpression of an AMPK-activating non-catalytic subunit mutant (AMPK-gamma1-R70Q) dramatically inhibited forskolin-stimulated CFTR conductance in Calu-3 and CFTR-expressing Chinese hamster ovary cells. Plasma membrane expression of CFTR, assessed by surface biotinylation, was not affected by AMPK activation. In contrast, the single channel open probability of CFTR was strongly reduced in cell-attached patch clamp measurements of Calu-3 cells transfected with the AMPK-activating mutant, an effect due primarily to a substantial prolongation of the mean closed time of the channel. As a metabolic sensor in cells, AMPK may be important in tuning CFTR activity to cellular energy charge, thereby linking transepithelial transport and the maintenance of cellular ion gradients to cellular metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号