首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RecQ C-terminal (RQC) domain is known as the main DNA binding module of RecQ helicases such as Bloom syndrome protein (BLM) and Werner syndrome protein (WRN) that recognizes various DNA structures. Even though BLM is able to resolve various DNA structures similarly to WRN, BLM has different binding preferences for DNA substrates from WRN. In this study, we determined the solution structure of the RQC domain of human BLM. The structure shares the common winged-helix motif with other RQC domains. However, half of the N-terminal has unstructured regions (α1–α2 loop and α3 region), and the aromatic side chain on the top of the β-hairpin, which is important for DNA duplex strand separation in other RQC domains, is substituted with a negatively charged residue (D1165) followed by the polar residue (Q1166). The structurally distinctive features of the RQC domain of human BLM suggest that the DNA binding modes of the BLM RQC domain may be different from those of other RQC domains.  相似文献   

3.
Cdc6/Cdc18 is a conserved and essential component of prereplication complexes. The 2.0 A crystal structure of an archaeal Cdc6 ortholog, in conjunction with a mutational analysis of the homologous Cdc18 protein from Schizosaccharomyces pombe, reveals novel aspects of Cdc6/Cdc18 function. Two domains of Cdc6 form an AAA+-type nucleotide binding fold that is observed bound to Mg.ADP. A third domain adopts a winged-helix fold similar to known DNA binding modules. Sequence comparisons show that the winged-helix domain is conserved in Orc1, and mutagenesis data demonstrate that this region of Cdc6/Cdc18 is required for function in vivo. Additional mutational analyses suggest that nucleotide binding and/or hydrolysis by Cdc6/Cdc18 is required not only for progression through S phase, but also for maintenance of checkpoint control during S phase.  相似文献   

4.
5.
Replication Protein A (RPA) is a single-stranded DNA binding protein that interacts with DNA repair proteins including Uracil DNA Glycosylase (UNG2). Here, I report DNA binding and activity assays using purified recombinant RPA and UNG2. Using synthetic DNA substrates, RPA was found to promote UNG2's interaction with ssDNA-dsDNA junctions regardless of the DNA strand polarity surrounding the junction. RPA stimulated UNG2's removal of uracil bases paired with adenine or guanine in DNA as much as 17-fold when the uracil was positioned 21 bps from ssDNA-dsDNA junctions, and the largest degree of UNG2 stimulation occurred when RPA was in molar excess compared to DNA. I found that RPA becomes sequestered on ssDNA regions surrounding junctions which promotes its spatial targeting of UNG2 near the junction. However, when RPA concentration exceeds free ssDNA, RPA promotes UNG2's activity without spatial constraints in dsDNA regions. These effects of RPA on UNG2 were found to be mediated primarily by interactions between RPA's winged-helix domain and UNG2's N-terminal domain, but when the winged-helix domain is unavailable, a secondary interaction between UNG2's N-terminal domain and RPA can occur. This work supports a widespread role for RPA in stimulating uracil base excision repair.  相似文献   

6.
Although NF (nuclear factor)-kappa B binds in vitro to several of the kappa B regulatory elements found in cellular and viral genes, another DNA binding protein, R kappa B, also binds to a related variant of the kappa B site that regulates interleukin-2 receptor alpha-chain gene expression, a critical event in T cell activation. Southern blot analysis of a human-mouse somatic cell hybrid panel and in situ hybridization using a fluorescent genomic R kappa B probe have allowed assignment of the R kappa B gene (NFRKB) to 11q24-q25. The NFRKB locus is in close proximity to the chromosomal breakpoint implicated in Ewing sarcoma, but it does not appear to span this region. Nonetheless, NFRKB may be particularly useful as the most telomeric marker thus far assigned to 11q.  相似文献   

7.
8.
9.
10.
The RuvB hexamer is the chemomechanical motor of the RuvAB complex that migrates Holliday junction branch-points in DNA recombination and the rescue of stalled DNA replication forks. The 1.6 A crystal structure of Thermotoga maritima RuvB together with five mutant structures reveal that RuvB is an ATPase-associated with diverse cellular activities (AAA+-class ATPase) with a winged-helix DNA-binding domain. The RuvB-ADP complex structure and mutagenesis suggest how AAA+-class ATPases couple nucleotide binding and hydrolysis to interdomain conformational changes and asymmetry within the RuvB hexamer implied by the crystallographic packing and small-angle X-ray scattering in solution. ATP-driven domain motion is positioned to move double-stranded DNA through the hexamer and drive conformational changes between subunits by altering the complementary hydrophilic protein- protein interfaces. Structural and biochemical analysis of five motifs in the protein suggest that ATP binding is a strained conformation recognized both by sensors and the Walker motifs and that intersubunit activation occurs by an arginine finger motif reminiscent of the GTPase-activating proteins. Taken together, these results provide insights into how RuvB functions as a motor for branch migration of Holliday junctions.  相似文献   

11.
12.
13.
RecQ DNA helicases act in conjunction with heterologous partner proteins to catalyze DNA metabolic activities, including recombination initiation and stalled replication fork processing. For the prototypical Escherichia coli RecQ protein, direct interaction with single-stranded DNA-binding protein (SSB) stimulates its DNA unwinding activity. Complex formation between RecQ and SSB is mediated by the RecQ winged-helix domain, which binds the nine C-terminal-most residues of SSB, a highly conserved sequence known as the SSB-Ct element. Using nuclear magnetic resonance and mutational analyses, we identify the SSB-Ct binding pocket on E. coli RecQ. The binding site shares a striking electrostatic similarity with the previously identified SSB-Ct binding site on E. coli exonuclease I, although the SSB binding domains in the two proteins are not otherwise related structurally. Substitutions that alter RecQ residues implicated in SSB-Ct binding impair RecQ binding to SSB and SSB/DNA nucleoprotein complexes. These substitutions also diminish SSB-stimulated DNA helicase activity in the variants, although additional biochemical changes in the RecQ variants indicate a role for the winged-helix domain in helicase activity beyond SSB protein binding. Sequence changes in the SSB-Ct element are sufficient to abolish interaction with RecQ in the absence of DNA and to diminish RecQ binding and helicase activity on SSB/DNA substrates. These results support a model in which RecQ has evolved an SSB-Ct binding site on its winged-helix domain as an adaptation that aids its cellular functions on SSB/DNA nucleoprotein substrates.  相似文献   

14.
15.
The Escherichia coli MukB, MukE, and MukF proteins form a bacterial condensin (MukBEF) that contributes to chromosome management by compacting DNA. MukB is an ATPase and DNA-binding protein of the SMC superfamily; however, the structure and function of non-SMC components, such as MukF, have been less forthcoming. Here, we report the crystal structure of the N-terminal 287 amino acids of MukF at 2.9 A resolution. This region folds into a winged-helix domain and an extended coiled-coil domain that self-associate to form a stable, doubly domain-swapped dimer. Protein dissection and affinity purification data demonstrate that the region of MukF C-terminal to this fragment binds to MukE and MukB. Our findings, together with sequence analyses, indicate that MukF is a kleisin subunit for E. coli condensin and suggest a means by which it may organize the MukBEF assembly.  相似文献   

16.
Zhu L  Hu J  Lin D  Whitson R  Itakura K  Chen Y 《Biochemistry》2001,40(31):9142-9150
Mrf-2 is a member of a new class of DNA-binding proteins known as the AT-rich interaction domain family or ARID. Chemical shift indices and characteristic NOE values indicate that the three-dimensional structure of the Mrf-2 ARID in complex with DNA is nearly identical to that of the free protein. The backbone dynamics of the Mrf-2 domain free and in complex with DNA have been characterized by (15)N NMR relaxation measurements and model-free analysis. Chemical shift perturbations and dynamic studies suggest that two flexible interhelical loops, the flexible C-terminal tail, and one alpha-helix are involved in DNA recognition, indicating the importance of protein dynamics in DNA binding. Some well-structured regions, in particular the putative DNA-contacting helix, in Mrf-2 show a decrease in the order parameters (S(2)) upon complex formation. The less well-structured loops and the unstructured C-terminus show reduced flexibility upon DNA binding. In addition, the model-free analysis indicates motions on the picosecond to nanosecond and micro- to millisecond time scales at the DNA-binding surface of the bound Mrf-2 ARID, suggesting a model where interactions between the protein and DNA are highly dynamic.  相似文献   

17.
The initiator protein Cdc6 (Cdc18 in fission yeast) plays an essential role in the initiation of eukaryotic DNA replication. In yeast the protein is expressed before initiation of DNA replication and is thought to be essential for loading of the helicase onto origin DNA. The biochemical properties of the protein, however, are largely unknown. Using three archaeal homologues of Cdc6, it was found that the proteins are autophosphorylated on Ser residues. The winged-helix domain at the C terminus of Cdc6 interacts with DNA, which apparently regulates the autophosphorylation reaction. Yeast Cdc18 was also found to autophosphorylate, suggesting that this function of Cdc6 may play a widely conserved and essential role in replication initiation.  相似文献   

18.
DnaD is a primosomal protein that remodels supercoiled plasmids. It binds to supercoiled forms and converts them to open forms without nicking. During this remodeling process, all the writhe is converted to twist and the plasmids are held around the periphery of large scaffolds made up of DnaD molecules. This DNA-remodeling function is the sum of a scaffold-forming activity on the N-terminal domain and a DNA-dependent oligomerization activity on the C-terminal domain. We have determined the crystal structure of the scaffold-forming N-terminal domain, which reveals a winged-helix architecture, with additional structural elements extending from both N- and C-termini. Four monomers form dimers that join into a tetramer. The N-terminal extension mediates dimerization and tetramerization, with extensive interactions and distinct interfaces. The wings and helices of the winged-helix domains remain exposed on the surface of the tetramer. Structure-guided mutagenesis and atomic force microscopy imaging indicate that these elements, together with the C-terminal extension, are involved in scaffold formation. Based upon our data, we propose a model for the DnaD-mediated scaffold formation.  相似文献   

19.
TorI (Tor inhibition protein) has been identified in Escherichia coli as a protein inhibitor acting through protein-protein interaction with the TorR response regulator. This interaction, which does not interfere with TorR DNA binding activity, probably prevents the recruitment of RNA polymerase to the torC promoter. In this study we have solved the solution structure of TorI, which adopts a prokaryotic winged-helix arrangement. Despite no primary sequence similarity, the three-dimensional structure of TorI is highly homologous to the (lambda)Xis, Mu bacteriophage repressor (MuR-DBD), and transposase (MuA-DBD) structures. We propose that the TorI protein is the structural missing link between the (lambda)Xis and MuR proteins. Moreover, in vivo assays demonstrated that TorI plays an essential role in prophage excision. Heteronuclear NMR experiments and site-directed mutagenesis studies have pinpointed out key residues involved in the DNA binding activity of TorI. Our findings suggest that TorI-related proteins identified in various pathogenic bacterial genomes define a new family of atypical excisionases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号