首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
Sequence alignment by cross-correlation.   总被引:1,自引:0,他引:1  
Many recent advances in biology and medicine have resulted from DNA sequence alignment algorithms and technology. Traditional approaches for the matching of DNA sequences are based either on global alignment schemes or heuristic schemes that seek to approximate global alignment algorithms while providing higher computational efficiency. This report describes an approach using the mathematical operation of cross-correlation to compare sequences. It can be implemented using the fast fourier transform for computational efficiency. The algorithm is summarized and sample applications are given. These include gene sequence alignment in long stretches of genomic DNA, finding sequence similarity in distantly related organisms, demonstrating sequence similarity in the presence of massive (approximately 90%) random point mutations, comparing sequences related by internal rearrangements (tandem repeats) within a gene, and investigating fusion proteins. Application to RNA and protein sequence alignment is also discussed. The method is efficient, sensitive, and robust, being able to find sequence similarities where other alignment algorithms may perform poorly.  相似文献   

2.
Gene identification in genomic DNA from eukaryotes is complicated by the vast combinatorial possibilities of potential exon assemblies. If the gene encodes a protein that is closely related to known proteins, gene identification is aided by matching similarity of potential translation products to those target proteins. The genomic DNA and protein sequences can be aligned directly by scoring the implied residues of in-frame nucleotide triplets against the protein residues in conventional ways, while allowing for long gaps in the alignment corresponding to introns in the genomic DNA. We describe a novel method for such spliced alignment. The method derives an optimal alignment based on scoring for both sequence similarity of the predicted gene product to the protein sequence and intrinsic splice site strength of the predicted introns. Application of the method to a representative set of 50 known genes from Arabidopsis thaliana showed significant improvement in prediction accuracy compared to previous spliced alignment methods. The method is also more accurate than ab initio gene prediction methods, provided sufficiently close target proteins are available. In view of the fast growth of public sequence repositories, we argue that close targets will be available for the majority of novel genes, making spliced alignment an excellent practical tool for high-throughput automated genome annotation.  相似文献   

3.
The challenge of similarity search in massive DNA sequence databases has inspired major changes in BLAST-style alignment tools, which accelerate search by inspecting only pairs of sequences sharing a common short "seed," or pattern of matching residues. Some of these changes raise the possibility of improving search performance by probing sequence pairs with several distinct seeds, any one of which is sufficient for a seed match. However, designing a set of seeds to maximize their combined sensitivity to biologically meaningful sequence alignments is computationally difficult, even given recent advances in designing single seeds. This work describes algorithmic improvements to seed design that address the problem of designing a set of n seeds to be used simultaneously. We give a new local search method to optimize the sensitivity of seed sets. The method relies on efficient incremental computation of the probability that an alignment contains a match to a seed pi, given that it has already failed to match any of the seeds in a set Pi. We demonstrate experimentally that multi-seed designs, even with relatively few seeds, can be significantly more sensitive than even optimized single-seed designs.  相似文献   

4.
Deep-level diagnostic value of the rDNA-ITS region   总被引:14,自引:0,他引:14  
The similarity of certain reported angiosperm rDNA internal transcribed spacer (ITS) region sequences to those of green algae prompted our analysis of the deep-level phylogenetic signal in the highly conserved but short 5.8S and hypervariable ITS2 sequences. We found that 5.8S sequences yield phylogenetic trees similar to but less well supported than those generated by a ca. 10-fold longer alignment from rDNA-18S sequences, as well as independent evidence. We attribute this result to our finding that, compared to 18S, the 5.8S has a higher proportion of sites subject to vary and greater among-site substitution rate homogeneity. We also determined that our phylogenetic results are not likely affected by intramolecular compensatory mutation to maintain RNA secondary structure nor by evident systematic biases in base composition. Despite historical homology, there appears to be no ITS2 primary sequence similarity shared sufficient similarity to cluster correctly on the basis of alignability. Our results indicate that groups, however, share sufficient similarity to cluster correctly on the basis of alignability. Our results indicate that ITS region sequences can diagnose organismal origins and phylogenetic relationships at many phylogenetic levels and provide a useful paradigm for molecular evolutionary study.   相似文献   

5.
6.
The effectiveness of sequence alignment in detecting structural homology among protein sequences decreases markedly when pairwise sequence identity is low (the so‐called “twilight zone” problem of sequence alignment). Alternative sequence comparison strategies able to detect structural kinship among highly divergent sequences are necessary to address this need. Among them are alignment‐free methods, which use global sequence properties (such as amino acid composition) to identify structural homology in a rapid and straightforward way. We explore the viability of using tetramer sequence fragment composition profiles in finding structural relationships that lie undetected by traditional alignment. We establish a strategy to recast any given protein sequence into a tetramer sequence fragment composition profile, using a series of amino acid clustering steps that have been optimized for mutual information. Our method has the effect of compressing the set of 160,000 unique tetramers (if using the 20‐letter amino acid alphabet) into a more tractable number of reduced tetramers (~15–30), so that a meaningful tetramer composition profile can be constructed. We test remote homology detection at the topology and fold superfamily levels using a comprehensive set of fold homologs, culled from the CATH database that share low pairwise sequence similarity. Using the receiver‐operating characteristic measure, we demonstrate potentially significant improvement in using information‐optimized reduced tetramer composition, over methods relying only on the raw amino acid composition or on traditional sequence alignment, in homology detection at or below the “twilight zone”. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Although the reconstruction of phylogenetic trees and the computation of multiple sequence alignments are highly interdependent, these two areas of research lead quite separate lives, the former often making use of stochastic modeling, whereas the latter normally does not. Despite the fact that reasonable insertion and deletion models for sequence pairs were already introduced more than 10 years ago, they have only recently been applied to multiple alignment and only in their simplest version. In this paper we present and discuss a strategy based on simulated annealing, which makes use of these models to infer a phylogenetic tree for a set of DNA or protein sequences together with the sequences'indel history, i.e., their multiple alignment augmented with information about the positioning of insertion and deletion events in the tree. Our method is also the first application of the TKF2 model in the context of multiple sequence alignment. We validate the method via simulations and illustrate it using a data set of primate mtDNA.  相似文献   

8.

Background

Masking of multiple sequence alignment blocks has become a powerful method to enhance the tree-likeness of the underlying data. However, existing masking approaches are insensitive to heterogeneous sequence divergence which can mislead tree reconstructions. We present AliGROOVE, a new method based on a sliding window and a Monte Carlo resampling approach, that visualizes heterogeneous sequence divergence or alignment ambiguity related to single taxa or subsets of taxa within a multiple sequence alignment and tags suspicious branches on a given tree.

Results

We used simulated multiple sequence alignments to show that the extent of alignment ambiguity in pairwise sequence comparison is correlated with the frequency of misplaced taxa in tree reconstructions. The approach implemented in AliGROOVE allows to detect nodes within a tree that are supported despite the absence of phylogenetic signal in the underlying multiple sequence alignment. We show that AliGROOVE equally well detects heterogeneous sequence divergence in a case study based on an empirical data set of mitochondrial DNA sequences of chelicerates.

Conclusions

The AliGROOVE approach has the potential to identify single taxa or subsets of taxa which show predominantly randomized sequence similarity in comparison with other taxa in a multiple sequence alignment. It further allows to evaluate the reliability of node support in a novel way.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-294) contains supplementary material, which is available to authorized users.  相似文献   

9.
Exon discovery by genomic sequence alignment   总被引:5,自引:0,他引:5  
MOTIVATION: During evolution, functional regions in genomic sequences tend to be more highly conserved than randomly mutating 'junk DNA' so local sequence similarity often indicates biological functionality. This fact can be used to identify functional elements in large eukaryotic DNA sequences by cross-species sequence comparison. In recent years, several gene-prediction methods have been proposed that work by comparing anonymous genomic sequences, for example from human and mouse. The main advantage of these methods is that they are based on simple and generally applicable measures of (local) sequence similarity; unlike standard gene-finding approaches they do not depend on species-specific training data or on the presence of cognate genes in data bases. As all comparative sequence-analysis methods, the new comparative gene-finding approaches critically rely on the quality of the underlying sequence alignments. RESULTS: Herein, we describe a new implementation of the sequence-alignment program DIALIGN that has been developed for alignment of large genomic sequences. We compare our method to the alignment programs PipMaker, WABA and BLAST and we show that local similarities identified by these programs are highly correlated to protein-coding regions. In our test runs, PipMaker was the most sensitive method while DIALIGN was most specific. AVAILABILITY: The program is downloadable from the DIALIGN home page at http://bibiserv.techfak.uni-bielefeld.de/dialign/.  相似文献   

10.
MOTIVATION: Computationally identifying non-coding RNA regions on the genome has much scope for investigation and is essentially harder than gene-finding problems for protein-coding regions. Since comparative sequence analysis is effective for non-coding RNA detection, efficient computational methods are expected for structural alignments of RNA sequences. On the other hand, Hidden Markov Models (HMMs) have played important roles for modeling and analysing biological sequences. Especially, the concept of Pair HMMs (PHMMs) have been examined extensively as mathematical models for alignments and gene finding. RESULTS: We propose the pair HMMs on tree structures (PHMMTSs), which is an extension of PHMMs defined on alignments of trees and provides a unifying framework and an automata-theoretic model for alignments of trees, structural alignments and pair stochastic context-free grammars. By structural alignment, we mean a pairwise alignment to align an unfolded RNA sequence into an RNA sequence of known secondary structure. First, we extend the notion of PHMMs defined on alignments of 'linear' sequences to pair stochastic tree automata, called PHMMTSs, defined on alignments of 'trees'. The PHMMTSs provide various types of alignments of trees such as affine-gap alignments of trees and an automata-theoretic model for alignment of trees. Second, based on the observation that a secondary structure of RNA can be represented by a tree, we apply PHMMTSs to the problem of structural alignments of RNAs. We modify PHMMTSs so that it takes as input a pair of a 'linear' sequence and a 'tree' representing a secondary structure of RNA to produce a structural alignment. Further, the PHMMTSs with input of a pair of two linear sequences is mathematically equal to the pair stochastic context-free grammars. We demonstrate some computational experiments to show the effectiveness of our method for structural alignments, and discuss a complexity issue of PHMMTSs.  相似文献   

11.
Wang JP  Widom J 《Nucleic acids research》2005,33(21):6743-6755
DNA sequences that are present in nucleosomes have a preferential approximately 10 bp periodicity of certain dinucleotide signals, but the overall sequence similarity of the nucleosomal DNA is weak, and traditional multiple sequence alignment tools fail to yield meaningful alignments. We develop a mixture model that characterizes the known dinucleotide periodicity probabilistically to improve the alignment of nucleosomal DNAs. We assume that a periodic dinucleotide signal of any type emits according to a probability distribution around a series of 'hot spots' that are equally spaced along nucleosomal DNA with 10 bp period, but with a 1 bp phase shift across the middle of the nucleosome. We model the three statistically most significant dinucleotide signals, AA/TT, GC and TA, simultaneously, while allowing phase shifts between the signals. The alignment is obtained by maximizing the likelihood of both Watson and Crick strands simultaneously. The resulting alignment of 177 chicken nucleosomal DNA sequences revealed that all 10 distinct dinucleotides are periodic, however, with only two distinct phases and varying intensity. By Fourier analysis, we show that our new alignment has enhanced periodicity and sequence identity compared with center alignment. The significance of the nucleosomal DNA sequence alignment is evaluated by comparing it with that obtained using the same model on non-nucleosomal sequences.  相似文献   

12.
Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements. J. Exp. Zool. ( Mol. Dev. Evol.) 285:128-139, 1999.  相似文献   

13.
MOTIVATION: The discovery of solid-binding peptide sequences is accelerating along with their practical applications in biotechnology and materials sciences. A better understanding of the relationships between the peptide sequences and their binding affinities or specificities will enable further design of novel peptides with selected properties of interest both in engineering and medicine. RESULTS: A bioinformatics approach was developed to classify peptides selected by in vivo techniques according to their inorganic solid-binding properties. Our approach performs all-against-all comparisons of experimentally selected peptides with short amino acid sequences that were categorized for their binding affinity and scores the alignments using sequence similarity scoring matrices. We generated novel scoring matrices that optimize the similarities within the strong-binding peptide sequences and the differences between the strong- and weak-binding peptide sequences. Using the scoring matrices thus generated, a given peptide is classified based on the sequence similarity to a set of experimentally selected peptides. We demonstrate the new approach by classifying experimentally characterized quartz-binding peptides and computationally designing new sequences with specific affinities. Experimental verifications of binding of these computationally designed peptides confirm our predictions with high accuracy. We further show that our approach is a general one and can be used to design new sequences that bind to a given inorganic solid with predictable and enhanced affinity.  相似文献   

14.
PALMA: mRNA to genome alignments using large margin algorithms   总被引:1,自引:0,他引:1  
MOTIVATION: Despite many years of research on how to properly align sequences in the presence of sequencing errors, alternative splicing and micro-exons, the correct alignment of mRNA sequences to genomic DNA is still a challenging task. RESULTS: We present a novel approach based on large margin learning that combines accurate splice site predictions with common sequence alignment techniques. By solving a convex optimization problem, our algorithm-called PALMA-tunes the parameters of the model such that true alignments score higher than other alignments. We study the accuracy of alignments of mRNAs containing artificially generated micro-exons to genomic DNA. In a carefully designed experiment, we show that our algorithm accurately identifies the intron boundaries as well as boundaries of the optimal local alignment. It outperforms all other methods: for 5702 artificially shortened EST sequences from Caenorhabditis elegans and human, it correctly identifies the intron boundaries in all except two cases. The best other method is a recently proposed method called exalin which misaligns 37 of the sequences. Our method also demonstrates robustness to mutations, insertions and deletions, retaining accuracy even at high noise levels. AVAILABILITY: Datasets for training, evaluation and testing, additional results and a stand-alone alignment tool implemented in C++ and python are available at http://www.fml.mpg.de/raetsch/projects/palma  相似文献   

15.
Abstract: Twenty-five 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacteria from geographically diverse locations and presenting various degrees of similarity or no similarity to the tfdA and tfdB genes from Alcaligenes eutrophus JMP134 were analysed by PCR-RFLP (restriction length fragment polymorphism). Primers for the 2,4-D etherase gene were derived by sequence alignment of the tfdA genes from A. eutrophus JMP134 and Burkholderia sp. RASC. Primers for the 2,4-dichlorophenolhydroxylase gene were based on the tfdB gene sequence from A. eutrophus JMP134 by taking codon degeneration and variations in amino acid residue sequences into consideration. PCR amplification using the tfdA primer set produced fragments of 0.3 kb from 17 strains which showed varying degrees of similarity to the tfdA gene probe from A. eutrophus JMP134. Significant variations in the gene sequences were confirmed by PCR-RFLP analysis. DNA amplification using the tfdB primer set produced a 1.1 kb fragment from 19 strains. Amongst them, two did not show any similarity to the tfdB gene probe. The size and restriction pattern of the products obtained from A. eutrophus JMP134 were in accordance with the expected size calculated from the A. eutrophus tfdA and tfdB gene sequence and their theoretical PCR-RFLP patterns. Some strains which did not amplify using the tfdA primer set did however amplify with the tfdB primer set. These results suggest the independent evolution of these two genes in the construction of the 2,4-D metabolic pathway. Our tfdA and tfdB primer sets could be used for the detection of similar sequences in bacteria and soils. Moreover, PCR-RFLP patterns could also be used to select subsets of strains for sequencing to study the phylogeny of the tfdA and tfdB genes.  相似文献   

16.
To infer a phylogenetic tree from a set of DNA sequences, typically a multiple alignment is first used to obtain homologous bases. The inferred phylogeny can be very sensitive to how the alignment was created. We develop tools for analyzing the robustness of phylogeny to perturbations in alignment parameters in the NW algorithm. Our main tool is parametric alignment, with novel improvements that are of general interest in parametric inference. Using parametric alignment and a Gaussian distribution on alignment parameters, we derive probabilities of optimal alignment summaries and inferred phylogenies. We apply our method to analyze intronic sequences from Drosophila flies. We show that phylogeny estimates can be sensitive to the choice of alignment parameters, and that parametric alignment elucidates the relationship between alignment parameters and reconstructed trees.  相似文献   

17.
Arbuscular mycorrhizal fungi (AMF) are an ecologically important group of fungi. Previous studies showed the presence of divergent copies of beta-tubulin and V-type vacuolar H+-ATPase genes in AMF genomes and suggested horizontal gene transfer from host plants or mycoparasites to AMF. We sequenced these genes from DNA isolated from an in vitro cultured isolate of Glomus intraradices that was free of any obvious contaminants. We found two highly variable beta-tubulin sequences and variable H+-ATPase sequences. Despite this high variation, comparison of the sequences with those in gene banks supported a glomeromycotan origin of G. intraradices beta-tubulin and H+-ATPase sequences. Thus, our results are in sharp contrast with the previously reported polyphyletic origin of those genes. We present evidence that some highly divergent sequences of beta-tubulin and H+-ATPase deposited in the databases are likely to be contaminants. We therefore reject the prediction of horizontal transfer to AMF genomes. High differences in GC content between glomeromycotan sequences and sequences grouping in other lineages are shown and we suggest they can be used as an indicator to detect such contaminants. H+-ATPase phylogeny gave unexpected results and failed to resolve fungi as a natural group. beta-Tubulin phylogeny supported Glomeromeromycota as sister group of the Chytridiomycota. Contrasts between our results and trees previously generated using rDNA sequences are discussed.  相似文献   

18.
19.
SimShift: identifying structural similarities from NMR chemical shifts   总被引:3,自引:0,他引:3  
MOTIVATION: An important quantity that arises in NMR spectroscopy experiments is the chemical shift. The interpretation of these data is mostly done by human experts; to our knowledge there are no algorithms that predict protein structure from chemical shift sequences alone. One approach to facilitate this process could be to compare two such sequences, where the structure of one protein has already been resolved. Our claim is that similarity of chemical shifts thereby found implies structural similarity of the respective proteins. RESULTS: We present an algorithm to identify structural similarities of proteins by aligning their associated chemical shift sequences. To evaluate the correctness of our predictions, we propose a benchmark set of protein pairs that have high structural similarity, but low sequence similarity (because with high sequence similarity the structural similarities could easily be detected by a sequence alignment algorithm). We compare our results with those of HHsearch and SSEA and show that our method outperforms both in >50% of all cases.  相似文献   

20.
SUMMARY: Multiple sequence alignment is the NP-hard problem of aligning three or more DNA or amino acid sequences in an optimal way so as to match as many characters as possible from the set of sequences. The popular sequence alignment program ClustalW uses the classical method of approximating a sequence alignment, by first computing a distance matrix and then constructing a guide tree to show the evolutionary relationship of the sequences. We show that parallelizing the ClustalW algorithm can result in significant speedup. We used a cluster of workstations using C and message passing interface for our implementation. Experimental results show that speedup of over 5.5 on six processors is obtainable for most inputs. AVAILABILITY: The software is available upon request from the second author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号