首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Approximately 1% of those infected with HIV-1 develop broad and potent serum cross-neutralizing antibody activities. It is unknown whether or not the development of such immune responses affects the replication of the contemporaneous autologous virus. Here, we defined a pathway of autologous viral escape from contemporaneous potent and broad serum neutralizing antibodies developed by an elite HIV-1-positive (HIV-1+) neutralizer. These antibodies potently neutralize diverse isolates from different clades and target primarily the CD4-binding site (CD4-BS) of the viral envelope glycoprotein. Viral escape required mutations in the viral envelope glycoprotein which limited the accessibility of the CD4-binding site to the autologous broadly neutralizing anti-CD4-BS antibodies but which allowed the virus to infect cells by utilizing CD4 receptors on their surface. The acquisition of neutralization resistance, however, resulted in reduced cell entry potential and slower viral replication kinetics. Our results indicate that in vivo escape from autologous broadly neutralizing antibodies exacts fitness costs to HIV-1.  相似文献   

2.
The current lack of envelope glycoprotein immunogens that elicit broadly neutralizing antibody responses remains a major challenge for human immunodeficiency virus type 1 (HIV-1) vaccine development. However, the recent design and construction of stable soluble gp140 trimers have shown that some neutralization breadth can be achieved by using immunogens that better mimic the functional viral spike complex. The use of genetic delivery systems to drive the in vivo expression of such immunogens for the stimulation of neutralizing antibodies against HIV-1 may offer advantages by maintaining the quaternary structure of the trimeric envelope glycoproteins. Here, we describe the biochemical and immunogenic properties of soluble HIV-1 envelope glycoprotein trimers expressed by recombinant Semliki Forest virus (rSFV). The results presented here demonstrate that rSFV supports the expression of stable soluble gp140 trimers that retain recognition by conformationally sensitive antibodies. Further, we show that rSFV particle immunizations efficiently primed immune responses as measured after a single boost with purified trimeric gp140 protein, resulting in a Th1-biased antibody response. This differed from the Th2-biased antibody response obtained after repeated immunizations with purified gp140 protein trimers. Despite this difference, both regimens stimulated neutralizing antibody responses of similar potency. This suggests that rSFV may be a useful component of a viral vector prime-protein boost regimen aimed at stimulating both cell-mediated immune responses and neutralizing antibodies against HIV-1.  相似文献   

3.
A major challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development is to elicit potent and broadly neutralizing antibodies that are effective against primary viral isolates. Previously, we showed that DNA prime-protein boost vaccination using HIV-1 gp120 antigens was more effective in eliciting neutralizing antibodies against primary HIV-1 isolates than was a recombinant gp120 protein-only vaccination approach. In the current study, we analyzed the difference in antibody specificities in rabbit sera elicited by these two immunization regimens using peptide enzyme-linked immunosorbent assay and a competitive virus capture assay. Our results indicate that a DNA prime-protein boost regimen is more effective than a protein-alone vaccination approach in inducing antibodies that target two key neutralizing domains: the V3 loop and the CD4 binding site. In particular, positive antibodies targeting several peptides that overlap with the known CD4 binding area were detected only in DNA-primed sera. Different profiles of antibody specificities provide insight into the mechanisms behind the elicitation of better neutralizing antibodies with the DNA prime-protein boost approach, and our results support the use of this approach to further optimize Env formulations for HIV vaccine development.  相似文献   

4.
Identifying the targets of broadly neutralizing antibodies to HIV-1 and understanding how these antibodies develop remain important goals in the quest to rationally develop an HIV-1 vaccine. We previously identified a participant in the CAPRISA Acute Infection Cohort (CAP257) whose plasma neutralized 84% of heterologous viruses. In this study we showed that breadth in CAP257 was largely due to the sequential, transient appearance of three distinct broadly neutralizing antibody specificities spanning the first 4.5 years of infection. The first specificity targeted an epitope in the V2 region of gp120 that was also recognized by strain-specific antibodies 7 weeks earlier. Specificity for the autologous virus was determined largely by a rare N167 antigenic variant of V2, with viral escape to the more common D167 immunotype coinciding with the development of the first wave of broadly neutralizing antibodies. Escape from these broadly neutralizing V2 antibodies through deletion of the glycan at N160 was associated with exposure of an epitope in the CD4 binding site that became the target for a second wave of broadly neutralizing antibodies. Neutralization by these CD4 binding site antibodies was almost entirely dependent on the glycan at position N276. Early viral escape mutations in the CD4 binding site drove an increase in wave two neutralization breadth, as this second wave of heterologous neutralization matured to recognize multiple immunotypes within this site. The third wave targeted a quaternary epitope that did not overlap any of the four known sites of vulnerability on the HIV-1 envelope and remains undefined. Altogether this study showed that the human immune system is capable of generating multiple broadly neutralizing antibodies in response to a constantly evolving viral population that exposes new targets as a consequence of escape from earlier neutralizing antibodies.  相似文献   

5.
Mader A  Kunert R 《PloS one》2012,7(6):e39063
The HIV-1 envelope protein harbors several conserved epitopes that are recognized by broadly neutralizing antibodies. One of these neutralizing sites, the MPER region of gp41, is targeted by one of the most potent and broadly neutralizing monoclonal antibody, 2F5. Different vaccination strategies and a lot of efforts have been undertaken to induce MPER neutralizing antibodies but little success has been achieved so far. We tried to consider the alternative anti-idiotypic vaccination approach for induction of 2F5-like antibodies. The previously developed and characterized anti-idiotypic antibody Ab2/3H6 was expressed as antibody fragment fusion protein with C-terminally attached immune-modulators and used for immunization of rabbits to induce antibodies specific for HIV-1. Only those rabbits immunized with immunogens fused with the immune-modulators developed HIV-1 specific antibodies. Anti-anti-idiotypic antibodies were affinity purified using a two-step affinity purification protocol which revealed that only little amount of the total rabbit IgG fraction contained HIV-1 specific antibodies. The characterization of the induced anti-anti-idiotypic antibodies showed specificity for the linear epitope of 2F5 GGGELDKWASL and the HIV-1 envelope protein gp140. Despite specificity for the linear epitope and the truncated HIV-1 envelope protein these antibodies were not able to exhibit virus neutralization activities. These results suggest that Ab2/3H6 alone might not be suitable as a vaccine.  相似文献   

6.
The monoclonal antibody (MAb) VRC01 was isolated from a slowly progressing HIV-1-infected donor and was shown to neutralize diverse HIV-1 strains by binding to the conserved CD4 binding site (CD4bs) of gp120. To better understand the virologic factors associated with such antibody development, we characterized HIV-1 envelope (Env) variants from this donor and five other donors who developed broadly neutralizing antibodies. A total of 473 env sequences were obtained by single-genome amplification, and 100 representative env clones were expressed and tested for entry and neutralization sensitivity. While VRC01 neutralizes about 90% of the genetically diverse heterologous HIV-1 strains tested, only selective archival Env variants from the VRC01 donor were sensitive to VRC01 and all of the Env variants derived from the donor plasma were resistant, indicating strong antibody-based selection pressure. Despite their resistance to this broadly reactive MAb that partially mimics CD4, all Env variants required CD4 for entry. Three other CD4bs MAbs from the same donor were able to neutralize some VRC01 escape variants, suggesting that CD4bs antibodies continued to evolve in response to viral escape. We also observed a relatively high percentage of VRC01-resistant Env clones in the plasma of four of five additional broadly neutralizing donors, suggesting the presence of CD4bs-directed neutralizing antibodies in these donors. In total, these data indicate that the CD4bs-directed neutralizing antibodies exert ongoing selection pressure on the conserved CD4bs epitope of HIV-1 Env.  相似文献   

7.
HIV-1-specific cytotoxic T lymphocytes(CTLs) and neutralizing antibodies(NAbs) are present during chronic infection, but the relative contributions of these effector mechanisms to viral containment remain unclear. Here, using an in vitro model involving autologous CD4+ T cells,primary HIV-1 isolates, HIV-1-specific CTLs, and neutralizing monoclonal antibodies, we show that b12, a potent and broadly neutralizing monoclonal antibody to HIV-1, was able to block viral infection when preincubated with virus prior to infection, but was much less effective than CTLs at limiting virus replication when added to infected cell cultures. However, the same neutralizing antibody was able to contain viruses by antibody-dependent cell-mediated virus inhibition in vitro,which was mediated by natural killer cells(NKs) and dependent on an Fc-Fc receptor interaction.Meanwhile, bulk CTLs from HIV-1 controllers were more effective in suppression of virus replication than those from progressors. These findings indicate that control of HIV-1 replication in activated CD4~+ T cells is ineffectively mediated by neutralizing antibodies alone, but that both CTLs and antibody-dependent NK-mediated immune mechanisms contribute to viral containment. Our study systemically compared three major players in controlling HIV-1 infection, CTLs, NAbs, and NKs, in an autologous system and highlighted the multifactorial mechanisms for viral containment and vaccine success.  相似文献   

8.
The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans.  相似文献   

9.
The ability to induce anti-HIV-1 antibodies that can neutralize a broad spectrum of viral isolates from different subtypes seems to be a key requirement for development of an effective HIV-1 vaccine. The epitopes recognized by the most potent broadly neutralizing antibodies that have been characterized are largely discontinuous. Mimetics of such conformational epitopes could be potentially used as components of a synthetic immunogen that can elicit neutralizing antibodies. Here we used phage display technology to identify peptide motifs that mimic the epitope recognized by monoclonal antibody VRC01, which is able to neutralize up to 91% of circulating primary isolates. Three rounds of biopanning were performed against 2 different phage peptide libraries for this purpose. The binding specificity of selected phage clones to monoclonal antibody VRC01 was estimated using dot blot analysis. The putative peptide mimics exposed on the surface of selected phages were analyzed for conformational and linear homology to the surface of HIV-1 gp120 fragment using computational analysis. Corresponding peptides were synthesized and checked for their ability to interfere with neutralization activity of VRC01 in a competitive inhibition assay. One of the most common peptides selected from 12-mer phage library was found to partially mimic a CD4-binding loop fragment, whereas none of the circular C7C-mer peptides was able to mimic any HIV-1 domains. However, peptides identified from both the 12-mer and C7C-mer peptide libraries showed rescue of HIV-1 infectivity in the competitive inhibition assay. The identification of epitope mimics may lead to novel immunogens capable of inducing broadly reactive neutralizing antibodies.  相似文献   

10.
The development of an effective vaccine preventing HIV-1 infection remains elusive. Thus, the development of novel approaches capable of preventing HIV-1 transmission is of paramount importance. However, this is partly hindered by the lack of an easily accessible small-animal model to rapidly measure viral entry. Here, we report the generation of a human CD4- and human CCR5-expressing transgenic luciferase reporter mouse that facilitates measurement of peritoneal and genitomucosal HIV-1 pseudovirus entry in vivo. We show that antibodies and antiretrovirals mediate preexposure protection in this mouse model and that the serum antibody concentration required for protection from cervicovaginal infection is comparable to that required to protect macaques. Our results suggest that this system represents a model for the preclinical evaluation of prophylactic or vaccine candidates. It further supports the idea that broadly neutralizing antibodies should be evaluated for use as preexposure prophylaxis in clinical trials.  相似文献   

11.

Background

Induction of broadly neutralizing antibodies, such as the monoclonal antibodies IgGb12, 2F5 and 2G12, is the objective of most antibody-based HIV-1 vaccine undertakings. However, despite the relative conserved nature of epitopes targeted by these antibodies, mechanisms underlying the sensitivity of circulating HIV-1 variants to broadly neutralizing antibodies are not fully understood. Here we have studied sensitivity to broadly neutralizing antibodies of HIV-1 variants that emerge during disease progression in relation to molecular alterations in the viral envelope glycoproteins (Env), using a panel of primary R5 HIV-1 isolates sequentially obtained before and after AIDS onset.

Principal Findings

HIV-1 R5 isolates obtained at end-stage disease, after AIDS onset, were found to be more sensitive to neutralization by TriMab, an equimolar mix of the IgGb12, 2F5 and 2G12 antibodies, than R5 isolates from the chronic phase. The increased sensitivity correlated with low CD4+ T cell count at time of virus isolation and augmented viral infectivity. Subsequent sequence analysis of multiple env clones derived from the R5 HIV-1 isolates revealed that, concomitant with increased TriMab neutralization sensitivity, end-stage R5 variants displayed envelope glycoproteins (Envs) with reduced numbers of potential N-linked glycosylation sites (PNGS), in addition to increased positive surface charge. These molecular changes in Env also correlated to sensitivity to neutralization by the individual 2G12 monoclonal antibody (mAb). Furthermore, results from molecular modeling suggested that the PNGS lost at end-stage disease locate in the proximity to the 2G12 epitope.

Conclusions

Our study suggests that R5 HIV-1 variants with increased sensitivity to broadly neutralizing antibodies, including the 2G12 mAb, may emerge in an opportunistic manner during severe immunodeficiency as a consequence of adaptive molecular Env changes, including loss of glycosylation and gain of positive charge.  相似文献   

12.
Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.  相似文献   

13.
Broadly neutralizing antibodies are considered an important part of a successful HIV vaccine. A better understanding of the factors underlying their development during infection and of the epitopes they target is needed to elicit similar antibody responses by vaccination. We and others reported that, on average, it takes 2 to 3 years for cross-reactive neutralizing antibodies to become detectable in the sera of HIV-1-infected subjects and that they target a limited number of epitopes on the HIV Envelope. Here we investigated the emergence and evolution of the earliest cross-reactive neutralizing antibody specificities in one HIV-1-infected individual, AC053. We defined two distinct epitopes on Env that are targeted by the broadly neutralizing antibody responses developed by AC053. The first specificity became evident at 3 years post infection and targeted the CD4-binding site of Env. Antibodies responsible for that specificity neutralized most, but not all, viruses susceptible to neutralization by the plasma antibodies of AC053. The second specificity became apparent approximately a year later. It was due to PG9-like antibodies, which were able to neutralize those viruses not susceptible to the anti-CD4-BS antibodies in AC053. These findings improve our understanding of the co-development of broadly neutralizing antibodies that target more than one epitope during natural HIV-1-infection in selected HIV+ subjects. They support the hypothesis that developing broadly neutralizing antibody responses targeting distinct epitopes by immunization could be feasible.  相似文献   

14.
Yang L  Song Y  Li X  Huang X  Liu J  Ding H  Zhu P  Zhou P 《Journal of virology》2012,86(14):7662-7676
The development of a successful vaccine against human immunodeficiency virus type 1 (HIV-1) likely requires immunogens that elicit both broadly neutralizing antibodies against envelope spikes and T cell responses that recognize multiple viral proteins. HIV-1 virus-like particles (VLP), because they display authentic envelope spikes on the particle surface, may be developed into such immunogens. However, in one way or the other current systems for HIV-1 VLP production have many limitations. To overcome these, in the present study we developed a novel strategy to produce HIV-1 VLP using stably transfected Drosophila S2 cells. We cotransfected S2 cells with plasmids encoding HIV-1 envelope, Gag, and Rev proteins and a selection marker. After stably transfected S2 clones were established, HIV-1 VLP and their immunogenicity in mice were carefully evaluated. Here, we report that HIV-1 envelope proteins are properly cleaved, glycosylated, and incorporated into VLP with Gag. The amount of VLP released into culture supernatants is comparable to those produced by insect cells infected with recombinant baculoviruses. Moreover, cryo-electron microscopy tomography revealed average 17 spikes per purified VLP, and antigenic epitopes on the spikes were recognized by the broadly neutralizing antibodies 2G12, b12, VRC01, and 4E10 but not by PG16. Finally, mice primed with DNA and boosted with VLP in the presence of CpG exhibited anti-envelope antibody responses, including ELISA-binding, neutralizing, antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated viral inhibition, as well as envelope and Gag-specific CD8 T cell responses. Thus, we conclude that HIV-1 VLP produced by the S2 expression system has many desirable features to be developed into a vaccine component against HIV-1.  相似文献   

15.
The rare, broadly neutralizing antibodies, 4E10 and 2F5, that target the HIV-1 membrane proximal external region also associate with HIV-1 membrane lipids as part of a required first-step in HIV-1 neutralization. HIV-1 virions have high concentration of cholesterol and sphingomyelin, which are able to organize into liquid-ordered domains (i.e., lipid rafts), and could influence the interaction of neutralizing antibodies with epitopes proximal to the membrane. The objective of this research is to understand how these lipid domains contribute to 2F5/4E10 membrane interactions and to antigen presentation in liposomal form of HIV-1 vaccines. To this end we have engineered biomimetic supported lipid bilayers and are able to use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody–membrane interactions. Our results demonstrate that 2F5/4E10 do not interact with highly ordered gel and liquid-ordered domains and exclusively bind to a liquid-disordered lipid phase. This suggests that vaccine liposomes that contain key viral membrane components, such as high cholesterol content, may not be advantageous for 2F5/4E10 vaccine strategies. Rather, vaccine liposomes that primarily contain a liquid-disordered phase may be more likely to elicit production of lipid reactive, 2F5- and 4E10-like antibodies.  相似文献   

16.
The development of an effective HIV-1 vaccine would be greatly facilitated by knowledge regarding the type and quantity of antibodies that are protective. Since definitive immune correlates are established only after a vaccine has been shown to be effective in humans, animal models are often used to guide vaccine development. Experimental lentivirus infection of non-human primates has shown that neutralizing antibodies can protect against infection. Most specifically, studies of passive antibody transfer in the chimeric SIV/HIV-1 immunodeficiency virus (SHIV) model have provided quantitative data on the level of protective antibody required. While direct extrapolation to humans is difficult, these data likely provide important insights into the protection afforded by antibodies against HIV-1. When used alone, high levels of neutralizing antibodies are required to completely block infection. However, even modest levels of antibody can provide partial protection and affect disease course. Understanding the exact level of protective antibody becomes even more complex in the setting of active immunization and coexisting cellular immunity. Despite this uncertainty, recent findings from lentiviral animal models strongly suggest that neutralizing antibodies will contribute to protection against HIV-1. Based on these data, a major goal of HIV-1 vaccine strategies is the induction of neutralizing antibodies against circulating primary HIV-1 strains.  相似文献   

17.
The humoral response to HIV-1 infection has been demonstrated by a variety of immunoassays utilizing viral proteins. While several assays detect HIV-1 infection with high sensitivity and great specificity, little progress has been made to develop immunoassays correlative with disease progression and viral transmission. Antibodies toward the V3 domain of HIV-1 envelope can prevent virus infection and block virus-mediated cell fusion in vitro. Such properties may be critical to the course of the disease. Furthermore, understanding the role of neutralizing antibodies against HIV-1 during infection in humans and generating biologically relevant neutralizing antibodies are paramount to developing an efficacious AIDS vaccine. In this study we explored peptide binding and neutralization assays and their relation to predicting disease progression and viral transmission. Biologically relevant polyclonal and monoclonal neutralizing antibodies that were derived from natural HIV-1 infection of humans, experimental infections of chimpanzees, and viral envelope protein peptide immunizations were characterized. Comparison of V3-specific monoclonal antibodies by antigen-limited ELISA and a quantitative HIV-1 neutralization assay demonstrated a less than optimal predictive relationship between binding and neutralization potency. On the other hand, polyclonal sera from goats immunized with V3-specific peptides derived from three different HIV-1 strains, as well as sera from other HIV-1-infected individuals demonstrated correlation between binding affinity and neutralization.  相似文献   

18.
Recombinant viral vectors are promising vaccine tools for eliciting potent cellular immune responses against immunodeficiency virus infection, but pre-existing anti-vector antibodies can be an obstacle to their clinical use in humans. We have previously vaccinated rhesus macaques with a recombinant Sendai virus (SeV) vector twice at an interval of more than 1 year and have shown efficient antigen-specific T-cell induction by the second as well as the first vaccination. Here, we have established the method for measurement of SeV-specific neutralizing titers and have found efficient SeV-specific neutralizing antibody responses just before the second SeV vaccination in these macaques. This suggests the feasibility of inducing antigen-specific T-cell responses by SeV vaccination even in the host with pre-existing anti-SeV neutralizing antibodies.  相似文献   

19.

Background

The evolution of HIV-1 and its immune escape to autologous neutralizing antibodies (Nabs) during the acute/early phases of infection have been analyzed in depth in many studies. In contrast, little is known about neither the long-term evolution of the virus in patients who developed broadly Nabs (bNabs) or the mechanism of escape in presence of these bNabs.

Results

We have studied the viral population infecting a long term non progressor HIV-1 infected patient who had developed broadly neutralizing antibodies toward all tier 2/3 viruses (6 clades) tested, 9 years after infection, and was then followed up over 7 years. The autologous neutralization titers of the sequential sera toward env variants representative of the viral population significantly increased during the follow-up period. The most resistant pseudotyped virus was identified at the last visit suggesting that it represented a late emerging escape variant. We identified 5 amino acids substitutions that appeared associated with escape to broadly neutralizing antibodies. They were V319I/S, R/K355T, R/W429G, Q460E and G/T463E, in V3, C3 and V5 regions.

Conclusion

This study showed that HIV-1 may continue to evolve in presence of both broadly neutralizing antibodies and increasing autologous neutralizing activity more than 10 years post-infection.  相似文献   

20.
Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号