首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic growth of Aerobacter aerogenes on citrate as a carbon source required the presence of Na(+). The growth rate increased with increasing Na(+) concentration and was optimal at 0.10 m Na(+). The requirement was specific for Na(+), which could not be replaced by K(+), NH(4) (+), Li(+), Rb(+), or Cs(+). K(+) was required for growth in the presence of Na(+), the optimal K(+) concentration being 0.15 mm. Enzyme profiles were determined on cells grown in three different media: (i) intermediate Na(+), high K(+) concentration, (ii) high Na(+), high K(+) concentration, and (c) high Na(+), low K(+) concentration. All cells contained the enzymes of the citrate fermentation pathway, namely, citritase and the Na(+)-requiring oxalacetate (OAA) decarboxylase. All of the enzymes of the citric acid cycle were present, except alpha-ketoglutarate dehydrogenase which could not be detected. The incomplete citric acid cycle was, in effect, converted into two biosynthetic pathways leading to glutamate and succinate, respectively. The specific activities of citritase and OAA decarboxylase were lowest in medium (i), and under these conditions the activity of OAA decarboxylase appeared to be limited in vivo by the availability of Na(+). Failure of A. aerogenes to grow anaerobically on citrate in the absence of Na(+) can be explained at the enzymatic level by the Na(+) requirement of the OAA decarboxylase step of the citrate fermentation pathway and by the absence of an alternate pathway of citrate catabolism.  相似文献   

2.
Tolevamer, (GT160-246), is a sodium salt of styrene sulfonate polymer that is under development for the treatment of diarrhea caused by infection with Clostridium difficile. Pulsed ultrafiltration binding experiments in phosphate buffer containing 0.15 M Na(+) provide per polymer chain dissociation constants of 133 nM and 8.7 microM for the binding of tolevamer to C. difficile toxins A and B, respectively. At 0.05 M Na(+), the binding of toxin A to tolevamer is irreversible, whereas the dissociation constant to toxin B under these conditions is 120 nM. Binding constants obtained from fluorescence polarization data for toxin A binding to tolevamer at 0.15 M Na(+) agree substantially with those obtained by pulsed ultrafiltration. The binding activity of tolevamer reported here correlates well with previously reported results for the inhibition of the biological activity of C. difficile toxins A and B. From the fluorescence polarization data, it is estimated that one toxin A molecule interacts with between 600 to 1000 monomer units on tolevamer at 0.15 M Na(+). Thus, the data suggest a very large interaction surface between polymer and toxin A.  相似文献   

3.
Influence of Na+ on Synthesis of Macromolecules by a Marine Bacterium   总被引:2,自引:1,他引:1  
Resting cells of Vibrio natriegens acquired the ability to take up (14)C-labeled mannitol in media containing Na(+) and K(+). But, the cells took up a significant quantity of the label as well in the presence of 0.3 m K(+) and no Na(+). The label was distributed throughout the cells in both systems. Cells incubated in mannitol minimal culture medium proliferated and synthesized approximately nine times as much protein in the presence of Na(+) and K(+) as those incubated in the presence of mannitol and 0.3 m K(+). The bacteria did not proliferate in the absence of Na(+). Cells incubated in medium containing mannitol and Na(+) and K(+) synthesized approximately twice the quantity of deoxyribonucleic acid and ribonucleic acid as those incubated in medium containing mannitol and 0.3 m K(+) but no Na(+). A significant amount of mannitolbinding protein was synthesized in the membranes of V. natriegens incubated in the presence of mannitol and Na(+) and K(+), but only a small quantity was produced in medium containing mannitol and 0.3 m K(+) but no Na(+). A binding fraction comprising at least two proteins (both with molecular weight near 34,000) was isolated by gel electrophoresis from other components of a K(2)CO(3)-extract of membrane protein from mannitol-grown cells. This binding fraction mediated phosphorylation of mannitol at the expense of either adenosine triphosphate or phosphoenolpyruvate. It was then found that mannitol-grown, but not broth-grown, cells contained nicotinamide adenine dinucleotide-linked mannitol-1-phosphate dehydrogenase. Neither contained mannitol dehydrogenase.  相似文献   

4.
Fedosova NU  Esmann M 《Biochemistry》2004,43(14):4212-4218
Correlation between the Na,K-ATPase affinity to ADP and the cation (its nature and concentration) present in the medium was investigated. In buffer with low ionic strength (I approximately 1 mM) high-affinity ADP binding was not observed, while a stepwise increase in the concentrations of added cation (Na(+), Tris(+), imidazole(+), N-methylglucamine(+), choline(+)) induced an increase in the ADP affinity. The effect was fully saturated at 30-50 mM for all of the cations tested. The maximal affinity for ADP was slightly higher in the presence of Na(+), Tris(+), or imidazole(+) than in the presence of N-methylglucamine(+) or choline(+) (equilibrium dissociation constant K(d) 0.2-0.3 vs 0.7 microM). The ADP dissociation rates from its complex with enzyme in the presence of Na(+) or Tris(+) were similar, implying identity of the nucleotide-binding enzyme conformations, which therefore are assigned to E(1). The ability to compete with K(+) clearly distinguished Na(+) from other cations, which speaks against the sole involvement of the transport sites in the induction of the ADP-binding E(1) conformation. Since the cations are similar in their mode of induction of the high ADP affinity but they demonstrate a pronounced difference in ability to compete with K(+), their effects cannot be combined within any scheme with only one type of cation-binding sites. We suggest that the high affinity toward nucleotide is induced by cation interactions within the protein or lipid and that these nucleotide-domain-related sites coexist with the transport sites, which bind only Na(+) or K(+).  相似文献   

5.
Sodium is an obligate growth requirement for most currently recognized predominant species of rumen bacteria. The isoosmotic deletion of Na(+) from a nutritionally adequate defined medium completely eliminated growth of most species. Growth yields and rates were both a function of Na(+) concentration for Na(+)-requiring species, and Na(+) could not be replaced by Rb(+), Li(+), or Cs(+) when these ions were substituted for Na(+) at a concentration equivalent to an Na(+) concentration that supported abundant growth. Li(+), Cs(+), or Rb(+) was toxic at an Na(+)-replacing concentration (15 mM) but not at a K(+)-replacing concentration (0.65 mM). K(+) was also an obligate growth requirement for rumen bacteria in media containing Na(+) and K(+) as major monovalent cations, but K(+) could be replaced, for most species, by Rb(+). The quantities of Na(+) that support rapid and abundant growth of Na(+)-requiring rumen bacteria show that these organisms are slight halophiles. A growth requirement for Na(+) appears more frequent among nonmarine bacteria than has been previously believed.  相似文献   

6.
The influence of external sodium ions on the sodium pump in erythrocytes   总被引:6,自引:0,他引:6  
1. A study has been made of the interaction between Na(+) and K(+) on the adenosine triphosphatase activity of erythrocyte ;ghosts', and on the K(+) influx and Na(+) efflux of intact erythrocytes. The adenosine triphosphatase activity and the ion movements were greater at a low external K(+) concentration in the absence of Na(+) than they were in the presence of 150mm-Na(+). The inhibition by external Na(+) of K(+) influx had an inhibitory constant of 5-10mm. 2. Activation by K(+) of kidney microsomal adenosine triphosphatase was retarded by Na(+), and activation by Na(+) was retarded by K(+). Fragmented erythrocyte membranes behaved similarly. 3. These observations suggest that there is competition between Na(+) and K(+) at the K(+)-sensitive site of the membrane.  相似文献   

7.
KcsA: it's a potassium channel   总被引:6,自引:0,他引:6       下载免费PDF全文
Ion conduction and selectivity properties of KcsA, a bacterial ion channel of known structure, were studied in a planar lipid bilayer system at the single-channel level. Selectivity sequences for permeant ions were determined by symmetrical solution conductance (K(+) > Rb(+), NH(4)(+), Tl(+) > Cs(+), Na(+), Li(+)) and by reversal potentials under bi-ionic or mixed-ion conditions (Tl(+) > K(+) > Rb(+) > NH(4)(+) > Na(+), Li(+)). Determination of reversal potentials with submillivolt accuracy shows that K(+) is over 150-fold more permeant than Na(+). Variation of conductance with concentration under symmetrical salt conditions is complex, with at least two ion-binding processes revealing themselves: a high affinity process below 20 mM and a low affinity process over the range 100-1,000 mM. These properties are analogous to those seen in many eukaryotic K(+) channels, and they establish KcsA as a faithful structural model for ion permeation in eukaryotic K(+) channels.  相似文献   

8.
9.
In contrast to the absolute Na(+) requirement for anaerobic growth of Aerobacter aerogenes on citrate as sole carbon source, aerobic growth of this microorganism did not require the presence of Na(+). However, Na(+) (optimal concentration, 10 mm) did increase the maximal amount of aerobic growth by 60%, even though it did not change the rate of growth. This increase in growth was specifically affected by Na(+), which could not be replaced by K(+), NH(4) (+), Li(+), Rb(+), or Cs(+). Enzyme profiles were determined in A. aerogenes cells grown aerobically on citrate in media of varying cationic composition. Cells grown in Na(+)-free medium possessed all the enzymes of the citric acid cycle including alpha-ketoglutarate dehydrogenase, which is repressed by anaerobic conditions of growth. The enzymes of the anaerobic citrate fermentation pathway, citritase and oxalacetate decarboxylase, were also present in these cells, but this pathway of citrate catabolism was effectively blocked by the absence of Na(+), which is essential for the activation of the oxalacetate decarboxylase step. Thus, in Na(+)-free medium, aerobic citrate catabolism proceeded solely via the citric acid cycle. Addition of 10 mm Na(+) to the aerobic citrate medium resulted in the activation of oxalacetate decarboxylase and the repression of alpha-ketoglutarate dehydrogenase, thereby diverting citrate catabolism from the (aerobic) citric acid cycle mechanism to the fermentation mechanism characteristic of anaerobic growth. The further addition of 2% potassium acetate to the medium caused repression of citritase and derepression of alpha-ketoglutarate dehydrogenase, switching citrate catabolism back into the citric acid cycle.  相似文献   

10.
The kinetic properties of the rat liver microsomal ATPase, with respect to Na(+), K(+) and AT P requirements were examined. Presence of Na(+) and K(+), or both hardly caused any stimulation of the enzyme activity. The Km values for Na(+) and K(+) were substantially low (0.32 and 0.05 mM, respectively), compared to those reported for the Na(+), K(+) ATPasesfrom different tissues. Substrate kinetics studies revealed that in the absence of Na(+) and K(+), ATP is an activator of the enzyme. The enzyme displayed increased activity with increase in the energy of activation in the absence of Na(+) and K(+). The activity was partially inhibited by ouabain only in the presence of Na(+) and K(+). The results suggest that the liver microsomal enzyme is not a Na(+), K(+) ATPase, but has requirement of monovalent cations for the regulation of its activity. Also, the beta3 subunit of the enzyme has a Km lowering effect.  相似文献   

11.
Bacteroides amylophilus has growth requirements for Na(+), PO(4) (3-), K(+), and small quantities of Mg(2+). No requirement could be shown for Ca(2+) in media previously found growth-yield-limiting for Bacteroides succinogenes. Deletion of Co(2+), Mn(2+), Cl(-), or SO(4) (2-) did not affect growth. Quantitative studies indicate that Na(+), K(+), and PO(4) (3-) have differing effects on the growth of B. amylophilus. A concentration of sodium and potassium ions affects both growth rate and growth yield, whereas a phosphate concentration markedly affects growth yield, but affects growth rate only slightly, if at all. The sodium requirement of B. amylophilus is absolute. It cannot be replaced by K(+), Li(+), Rb(+), or Cs(+). The latter three monovalent cations are toxic to B. amylophilus if supplied to the organism at Na(+)-replacing concentrations. K(+) is inactive at similar concentrations. The K(+) requirement of B. amylophilus may be satisfied by Rb(+). The concentration of Na(+) required by B. amylophilus for abundant growth suggests that B. amylophilus should be considered a slightly halophilic organism. The results suggest that Na(+) may be a more frequent requirement among terrestial bacteria obtained from relatively low-salt environments than has been previously believed.  相似文献   

12.
The aim of this study was to investigate whether or not the activity of the cardiac Na(+)-Ca(2+) exchanger might be directly sensitive to external K(+) concentration ([K(+)](e)). Measurements of whole-cell exchanger current (I(NaCa)) were made at 37 degrees C from guinea-pig isolated ventricular myocytes, using whole-cell patch clamp recording with major interfering conductances blocked. Changing [K(+)](e) from 0 to 5mM significantly reduced both outward and inward exchange currents in a time-dependent manner. Various [K(+)](e) between 1 and 15 mM were tested and the inhibitory effect was observed to be concentration-dependent. At steady-state, 5mM [K(+)](e) decreased the density of Ni(2+)-sensitive current by 52.8+/-4.3% (mean+/-S.E.M., n=6) and of 0Na0Ca-sensitive current by 39.0+/-4.4% (n=5). The possibility that the inhibitory effect of external K(+) on I(NaCa) might wholly or in part be secondary to activation of the sarcolemmal Na(+)-K(+) pump was investigated by testing the effect of K(+) addition in the presence of a high concentration of strophanthidin (500 microM). Ni(2+)-sensitive I(NaCa) was still observed to be sensitive to external K(+) (I(NaCa) decreased by 39.4+/-9.4%, n=4), suggesting that the inhibitory effect could occur independently of activation of the Na(+)-K(+) pump. The effect of external K(+) on I(NaCa) was verified using a baby hamster kidney (BHK) cell line stably expressing the cardiac Na(+)-Ca(2+) exchanger isoform, NCX1. Similar to native I(NaCa), NCX1 current was also suppressed by [K(+)](e). However, [K(+)](e) did not alter current amplitude in untransfected BHK cells. The effect of [K(+)](e) on I(NaCa) could not be attributed to simply adding any monovalent cation back to the external solution, since it was not reproduced by application of equimolar Li(+), Cs(+) and TEA(+). Rb(+), however, could mimic the effect of K(+). Collectively, these data suggest that external K(+) at physiologically and pathologically relevant concentrations might be able to modulate directly the activity of the cardiac Na(+)-Ca(2+) exchanger.  相似文献   

13.
In this study we reveal regions of Na(+),K(+)-ATPase and H(+),K(+)-ATPase that are involved in cation selectivity. A chimeric enzyme in which transmembrane hairpin M5-M6 of H(+),K(+)-ATPase was replaced by that of Na(+),K(+)-ATPase was phosphorylated in the absence of Na(+) and showed no K(+)-dependent reactions. Next, the part originating from Na(+),K(+)-ATPase was gradually increased in the N-terminal direction. We demonstrate that chimera HN16, containing the transmembrane segments one to six and intermediate loops of Na(+),K(+)-ATPase, harbors the amino acids responsible for Na(+) specificity. Compared with Na(+),K(+)-ATPase, this chimera displayed a similar apparent Na(+) affinity, a lower apparent K(+) affinity, a higher apparent ATP affinity, and a lower apparent vanadate affinity in the ATPase reaction. This indicates that the E(2)K form of this chimera is less stable than that of Na(+),K(+)-ATPase, suggesting that it, like H(+),K(+)-ATPase, de-occludes K(+) ions very rapidly. Comparison of the structures of these chimeras with those of the parent enzymes suggests that the C-terminal 187 amino acids and the beta-subunit are involved in K(+) occlusion. Accordingly, chimera HN16 is not only a chimeric enzyme in structure, but also in function. On one hand it possesses the Na(+)-stimulated ATPase reaction of Na(+),K(+)-ATPase, while on the other hand it has the K(+) occlusion properties of H(+),K(+)-ATPase.  相似文献   

14.
G protein-gated K(+) channels (GIRK, or Kir3) are activated by the direct binding of Gbetagamma or of cytosolic Na(+). Na(+) activation is fast, Gbetagamma-independent, and probably via a direct, low affinity (EC(50), 30-40 mm) binding of Na(+) to the channel. Here we demonstrate that an increase in intracellular Na(+) concentration, [Na(+)](in), within the physiological range (5-20 mm), activates GIRK within minutes via an additional, slow mechanism. The slow activation is observed in GIRK mutants lacking the direct Na(+) effect. It is inhibited by a Gbetagamma scavenger, hence it is Gbetagamma-dependent; but it does not require GTP. We hypothesized that Na(+) elevates the cellular concentration of free Gbetagamma by promoting the dissociation of the Galphabetagamma heterotrimer into free Galpha(GDP) and Gbetagamma. Direct biochemical measurements showed that Na(+) causes a moderate decrease (approximately 2-fold) in the affinity of interaction between Galpha(GDP) and Gbetagamma. Furthermore, in accord with the predictions of our model, slow Na(+) activation was enhanced by mild coexpression of Galpha(i3). Our findings reveal a previously unknown mechanism of regulation of G proteins and demonstrate a novel Gbetagamma-dependent regulation of GIRK by Na(+). We propose that Na(+) may act as a regulatory factor, or even a second messenger, that regulates effectors via Gbetagamma.  相似文献   

15.
A silicon nanowire field-effect transistor (SiNW-FET) coated with a polyvinyl chloride (PVC) membrane containing valinomycin (VAL) was employed as a biosensor (referred to as VAL-PVC/SiNW-FET) to detect the K(+)-efflux from live chromaffin cells. The detection sensitivity of K(+) with the VAL-PVC/SiNW-FET covers a broad range of concentrations from 10(-6) to 10(-2) M. The apparent association constants between VAL and Li(+), Na(+), K(+), and Cs(+) in Tris buffer solution were determined to be 67±42, 120±23, 5974±115, and 4121±140 M(-1), respectively. By culturing chromaffin cells on the VAL-PVC/SiNW-FET, the conductance was significantly increased by nicotine stimulation in a bath buffer without Na(+). The K(+) concentration at the cell surface was determined to be ~20 μM under the stimulation of 5 mM nicotine. These results demonstrate that the VAL-PVC/SiNW-FET is sensitive and selective to detect the released K(+) from cells and is suitable for applications in cellular recording investigations.  相似文献   

16.
Schiller D  Krämer R  Morbach S 《FEBS letters》2004,563(1-3):108-112
The Na(+)/betaine carrier BetP from Corynebacterium glutamicum was purified and reconstituted in Escherichia coli phospholipid liposomes and its osmosensory properties were studied with respect to the cation specificity of osmotic activation. To dissect the influence of the co-substrate Na(+) on the energetics of uptake from its possible role as a putative trigger of osmolality-dependent BetP activation, the internal Na(+) concentration was varied without changing DeltapNa(+). Studying betaine uptake at increasing luminal Na(+) or K(+) revealed that BetP activity was triggered by Na(+) only to a negligible extent compared to activation by K(+). We conclude that activation of BetP in proteoliposomes depends solely on K(+), both in mechanistic and in physiological terms.  相似文献   

17.
GerN, a Bacillus cereus spore germination protein, exhibits homology to a widely distributed group of putative cation transporters or channel proteins. GerN complemented the Na(+)-sensitive phenotype of an Escherichia coli mutant that is deficient in Na(+)/H(+) antiport activity (strain KNabc). GerN also reduced the concentration of K(+) required to support growth of an E. coli mutant deficient in K(+) uptake (strain TK2420). In a fluorescence-based assay of everted E. coli KNabc membrane vesicles, GerN exhibited robust Na(+)/H(+) antiport activity, with a K(m) for Na(+) estimated at 1.5 mM at pH 8.0 and 25 mM at pH 7.0. Li(+), but not K(+), served as a substrate. GerN-mediated Na(+)/H(+) antiport was further demonstrated in everted vesicles as energy-dependent accumulation of (22)Na(+). GerN also used K(+) as a coupling ion without completely replacing H(+), as indicated by partial inhibition by K(+) of H(+) uptake into right-side-out vesicles loaded with Na(+). K(+) translocation as part of the antiport was supported by the stimulatory effect of intravesicular K(+) on (22)Na(+) uptake by everted vesicles and the dependence of GerN-mediated (86)Rb(+) efflux on the presence of Na(+) in trans. The inhibitory patterns of protonophore and thiocyanate were most consistent with an electrogenic Na(+)/H(+)-K(+) antiport. GerN-mediated Na(+)/H(+)-K(+) antiport was much more rapid than GerN-mediated Na(+)/H(+) antiport.  相似文献   

18.
We have studied the links between the mechanisms of Na(+), K(+) and H(+) movements in glycolysing Mycoplasma mycoides var. Capri cells. In the light of the results reported in the preceding paper [Benyoucef, Rigaud & Leblanc (1982) Biochem. J.208, 529-538], we investigated certain properties of the membrane-bound ATPase of Mycoplasma cells, with special reference to its ionic requirements and sensitivity to specific inhibitors. Our findings show, first, that, although Na(+) stimulated ATPase activity, K(+) did not affect it, and, secondly, that NN'-dicyclocarboidi-imide and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD) were potent inhibitors of the basal ATPase activity, which was unaffected by vanadate and ouabain. We also investigated the movements of Na(+) and H(+) under the experimental conditions applied to the study of the K(+) uptake reported in the preceding paper, and found that when ;Na(+)-loaded cells' previously equilibrated with (22)Na(+) were diluted in a sodium-free medium, addition of glucose induced a rapid efflux of (22)Na(+). This energy-dependent efflux was independent of the presence of KCl in the medium. Studies of the changes in internal pH by 9-aminoacridine fluorescence or [(14)C]methylamine distribution indicated that the movement of Na(+) was coupled to that of protons moving in the opposite direction, a finding that supports the presence of an Na(+)/H(+) antiport. When Na(+)-loaded cells are diluted in an Na(+)-rich medium the Na(+)/H(+) antiport is still active, but cannot decrease the intracellular Na(+) concentration. Under such conditions, net (22)Na(+) extrusion is specifically dependent on the presence of K(+) in the medium. The present results and those derived from the study of K(+) accumulation (the preceding paper) can be rationalized by assuming that Mycoplasma mycoides var. Capri cells contain two transport systems for Na(+) extrusion: an Na(+)/H(+) antiport and an ATP-consuming Na(+)/K(+)-exchange system.  相似文献   

19.
20.
The TRK-HKT family of K(+) transporters mediates K(+) and Na(+) uptake in fungi and plants. In this study, we have investigated the molecular mechanism involved in the movement of alkali cations through the TRK1 transporter of Saccharomyces cerevisiae. The model that best explains the activity of ScTRK1 is a cotransport of two K(+) or Rb(+), both of which bind the two binding sites of ScTRK1 with very high affinities in K(+)-starved cells. Na(+) can be transported in the same way but it exhibits a much lower affinity for the second binding site. Therefore, only at critical concentration ratios between K(+) and Na(+), or Rb(+) and Na(+), the transporter takes up Na(+) together with K(+) or Rb(+). Mutation analyses suggest that the two binding sites are located in the P fragment of the first MPM motif of the transporter, and that Gln(90) is involved in these binding sites. ScTRK1 can be in two states, medium or high affinity, and we have found that Leu(949) is involved in the oscillation of the transporter between these two states. ScTRK1 mediates active K(+) uptake. This is not Na(+)-coupled and direct coupling of ScTRK1 to a source of chemical energy seems more probable than K(+)-H(+) cotransport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号