首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three types of viral sensitivity were observed in various mouse strains upon MHV3 infection: resistance, full susceptibility, and semisusceptibility. In the latter type, seen in several inbred strains including C3H, approximately 50% of the adult injected animals resisted to the acute disease. Most of the surviving mice, however, developed a chronic disease with a wasting syndrome and occurrence of paralysis. The chronic period of the disease was characterized by a persistent viral infection, since MHV3 virus was recovered from brain, liver, spleen, and lymph nodes throughout the evolution in most of the animals. In addition, a correlation was observed between the clinical evolution and the titer of virus tested 4 days after infection.  相似文献   

3.
4.
The ability of a neurotropic virus, mouse hepatitis virus type 3 (MHV3), to invade the central nervous system (CNS) and to recognize cells selectively within the brain was investigated in vivo and in vitro. In vivo, MHV3 induced in C3H mice a genetically controlled infection of meningeal cells, ependymal cells, and neurons. In vitro, purified MHV3 bound to the surface of isolated ependymal cells and cultured cortical neurons but not to oligodendrocytes or cultured astrocytes. MHV3 replicated within cultured cortical neurons and neuroblastoma cells (NIE 115); infected cultured neurons nonetheless survived and matured normally for a 7-day period postinfection. On the other hand, MHV3 had a low affinity for cortical glial cells or glioma cells (C6 line), both of which appear to be morphologically unaltered by viral infection. Finally, MHV3 infected and disrupted cultured meningeal cells. This suggests that differences in the affinity of cells for MHV3 are determinants of the selective vulnerability of cellular subpopulations within the CNS. In vivo, a higher titer of virus was needed for CNS penetration in the genetically resistant (A/Jx) mice than in the susceptible (C57/BL6) mouse strain. However, in spite of viral invasion, no neuropathological lesions developed. In vitro viral binding to adult ependymal cells of susceptible and resistant strains of mice was identical. Genetic resistance to MHV3-CNS infection appeared to be mediated both by a peripheral mechanism limiting viral penetration into the CNS and by intra-CNS mechanisms, presumably at a stage after viral attachment to target cells.  相似文献   

5.
Abstract The genetic sensitivity of mouse strains to mouse hepatitis virus 3 (MHV 3) has been related in vitro to a delay of virus replication in liver sinusoidal cells. In vivo immuno-histochemical studies of the liver from infected mice have demonstrated that mechanisms other than direct viral injury are in operation. To examine potential mechanisms, the interaction of lipopolysaccharide (LPS)-stimulated Kupffer cells with MHV 3 was studied. We first observed a dramatic inhibition in viral replication in LPS-treated Kupffer cells explanted from A/J resistant mice. Second, we demonstrated that MHV 3 induced a dose-dependent interleukin 1 (IL-1) activity in the supernatants of infected Kupffer cells of both strains. These results led us finally to examine the antigen-proceesing function of the Kupffer cellsof both strains of mice. No striking differences were observed in the ability of Kupffer cells from resistant or sensitive mice to collaborate with immunocompetent lymphocytes. Our data suggest that Kupffer cells play a double role which is crucial in the pathogenesis of MHV 3-induced hepatitis. First, they act directly as the genetically determined sensitivity of mice to MHV 3 infection is correlated with the efficiency of the antiviral activity induced in Kupffer cells by LPS. Second, they act indirectly through the synthesis of different amounts of IL-1 induced by MHV 3. This hypothesis is further borne out by the effects of indomethacin treatment on the course of MHV 3 infection in A/J resistant mice in vivo.  相似文献   

6.
During experimental serial passage of ascites myelomas through BALB/cJ mice, unexpected illness and premature deaths occurred. Postmortem examination of affected mice revealed focal or diffuse discolored depressed areas in the liver and, in some cases, splenomegaly. Histopathologic findings consisted of focal to diffuse areas of necrosis with minimal leukocytic infiltration. Aerobic and anaerobic bacterial cultures of livers and spleens from affected mice were negative. Mouse hepatitis virus (MHV) was isolated from livers of clinically ill mice and from the ascites myeloma lines. An MHV contaminated ascites myeloma line, when passed into nude (nu/nu) mice, killed the animals in 6 days; the virus was isolated from livers of inoculated mice. Attempts to determine the source of the infection were unsuccessful. Serologic survey of newly acquired mice indicated no evidence of antibodies to MHV while mice in holding rooms had titers that ranged from 1:10 to 1:40. Two solid myeloma lines (being maintained by subcutaneous passage) were negative for MHV when tested by virus isolation techniques, and nine lines were negative to 11 murine viruses when tested by mouse antibody production assay. Attempts to demonstrate Eperythrozoon coccoides in control BALB/cJ mice were unsuccessful. Because of the outbreak, changes were made in animal handling procedures. A colony of BALB/cAn mice negative to MHV antibodies was established to provide animals for experimental passage of tumors, and animals in both the breeding and transfer room were placed under filter tops. The results were encouraging. In the four newly established tumor lines, one having been passed 46 times, no illness or unexplained deaths were observed.  相似文献   

7.
K Yokomori  M M Lai 《Journal of virology》1992,66(12):6931-6938
The SJL mouse strain is resistant to infection by some strains of the murine coronavirus mouse hepatitis virus (MHV), such as JHM and A59. The block to virus infection has been variously attributed to defects in virus receptors or virus spread. Since the cellular receptors for MHV, mmCGM1 and mmCGM2, have recently been identified as members of the carcinoembryonic antigen family, we reexamined the possible defectiveness of the MHV receptors in SJL mouse strain. Cloning and sequencing of the cDNAs of both mmCGMs RNAs from SJL mice revealed that they were identical in size to those of the susceptible C57BL/6 (B6) mouse. There was some sequence divergence in the N terminus of the mmCGM molecules between the two mouse strains, resulting in a different number of potential glycosylation sites. This was confirmed by in vitro translation of the mmCGM RNAs, which showed that the glycosylated mmCGM2 of SJL was smaller than that of B6 mice. However, transfection of either mmCGM1 or mmCGM2 from SJL mice into MHV-resistant Cos 7 cells rendered the cells susceptible to MHV infection. The ability of the SJL mmCGM molecules to serve as MHV receptors was comparable to that of those from B6. These molecules are expressed in SJL mouse brain and liver in a similar ratio and in amounts equivalent to those in the B6 mouse. Furthermore, we demonstrated that an SJL-derived cell line was susceptible to A59 but resistant to JHM infection. We concluded that the MHV receptor molecules in the SJL mouse are functional and that the resistance of SJL mice to infection by some MHV strains most likely results from some other factor(s) required for virus entry or some other step(s) in virus replication.  相似文献   

8.
The genetic sensitivity of mouse strains to mouse hepatitis virus 3 (MHV 3) has been related in vitro to a delay of virus replication in liver sinusoidal cells. In vivo immuno-histochemical studies of the liver from infected mice have demonstrated that mechanisms other than direct viral injury are in operation. To examine potential mechanisms, the interaction of lipopolysaccharide (LPS)-stimulated Kupffer cells with MHV 3 was studied. We first observed a dramatic inhibition in viral replication in LPS-treated Kupffer cells explanted from A/J resistant mice. Second, we demonstrated that MHV 3 induced a dose-dependent interleukin 1 (IL-1) activity in the supernatants of infected Kupffer cells of both strains. These results led us finally to examine the antigen-processing function of the Kupffer cells of both strains of mice. No striking differences were observed in the ability of Kupffer cells from resistant or sensitive mice to collaborate with immunocompetent lymphocytes. Our data suggest that Kupffer cells play a double role which is crucial in the pathogenesis of MHV 3-induced hepatitis. First, they act directly as the genetically determined sensitivity of mice to MHV 3 infection is correlated with the efficiency of the antiviral activity induced in Kupffer cells by LPS. Second, they act indirectly through the synthesis of different amounts of IL-1 induced by MHV 3. This hypothesis is further borne out by the effects of indomethacin treatment on the course of MHV 3 infection in A/J resistant mice in vivo.  相似文献   

9.
The duration of mouse hepatitis virus (MHV) infection was examined in mice inoculated intranasally with selected strains of MHV. Following inoculation with virulent MHV-JHM, genetically susceptible BALB/c mice and resistant CD1 mice had detectable virus in the brain at 1 month, but not later intervals up to 12 months. BALB/c mice infected with avirulent MHV-S or MHV-1 had no detectable virus in brains at 1 month or thereafter. Immunosuppression of BALB/c mice with treatment regimens of hydrocortisone acetate or cyclophosphamide at 1 and 2 months after infection with MHV-JHM did not activate detectable virus in liver or increase the prevalence or degree of brain infection. Immunosuppression with these drugs during the acute phase of MHV-JHM infection influenced MHV infection, based on virus quantification in livers, but timing of drug treatment relative to MHV infection was critical. Mice infected with MHV developed IgG serum antibody titers that persisted without decline for up to 1 year after infection. Antibody titers varied with mouse genotype and infecting virus. These studies, using intranasal inoculation, support the conclusions of others, using other routes of inoculation, that MHV infection is not persistent in adult, immunocompetent mice.  相似文献   

10.
11.
A nude mouse colony held in an isolation unit was found to harbor MHV despite the fact that all hygienic precautions were taken. The virus spread rapidly causing a high mortality rate predominantly in experimental animals. Moreover, we observed a high percentage of tumor regression in our tumor transplanted mice. Attempts to eliminate the MHV by repeated tumor transplantation into virus-free nude mice were unsuccessful. Since MHV has a limited host range, we transplanted, in parallel, four different lines of embryonic renal tumors (three triphasic nephroblastomas and one malignant rhabdoid tumor of the kidney) from athymic mice into athymic rats and fragments of the same tumors into "fresh" nude mice. All manipulations were performed in isolators. Detection of MHV was done twice by serological examination of six-week-old sentinels. The results showed transmission of MHV infection in the control mice under gnotobiotic conditions as previously found in the normal animal room. On the other hand, there was no evidence of infection, neither in the transplanted nude rats nor after retransplantation of tumors into nude mice. We hypothesize that the virus is harbored in the stromal cells of the murine host but not of the rat host nor in the human tumor cells. Histological comparison showed no alteration of specific tumor morphology in the different hosts.  相似文献   

12.
In vivo RNA-RNA recombination of coronavirus in mouse brain.   总被引:13,自引:9,他引:4       下载免费PDF全文
RNA-RNA recombination between different strains of the murine coronavirus mouse hepatitis virus (MHV) occurs at a very high frequency in tissue culture. To demonstrate that RNA recombination may play a role in the evolution and pathogenesis of coronaviruses, we sought to determine whether MHV recombination could occur during replication in the animal host of the virus. By using two selectable markers, i.e., temperature sensitivity and monoclonal antibody neutralization, we isolated several recombinant viruses from the brains of mice infected with two different strains of MHV. The recombination frequency was very high, and recombination occurred at multiple sites on the viral RNA genome. This finding suggests that RNA-RNA recombination may play a significant role in natural evolution and neuropathogenesis of coronaviruses.  相似文献   

13.
Epitope-specific antibody response to murine hepatitis virus-4 (strain JHM)   总被引:3,自引:0,他引:3  
Monoclonal hybridoma antibodies to the structural proteins of murine hepatitis virus-4, strain JHM (MHV-4) were used in a competition binding enzyme immunoassay to analyze at the epitope level the antibody response of mice after infection with MHV-4. Colonized mice often had pre-existing MHV antibodies directed against epitopes on the E2 glycoprotein, the E1 glycoprotein, and the nucleocapsid protein. These mice generated a secondary antibody response after virus inoculation, reaching peak levels 7 days after infection. In contrast, Nude/+ mice raised in a pathogen-free colony had no detectable circulating MHV antibodies and generated a primary antibody response which gradually increased to peak levels 14 to 28 days after infection. Kinetics of antibody responses against specific epitopes usually correlated well with measured total virus-specific antibody responses, but variation was observed. Mice injected with three antigenically distinct strains of MHV made antibody responses to conserved epitopes but not to an antigenic determinant absent in these strains. Measurement of epitope-specific responses in a polyclonal population of viral specific antibodies is feasible and a valuable adjunct in understanding viral immunity.  相似文献   

14.
Murine coronavirus mouse hepatitis virus (MHV) causes persistent infection of the central nervous system (CNS) in rodents, which has been associated with demyelination. However, the precise mechanism of MHV persistence in the CNS remains elusive. Here we show that the progenitor oligodendrocytes (central glial 4 [CG-4] cells) derived from newborn rat brain were permissive to MHV infection, which resulted in cell death, although viral replication was restricted. Interestingly, treatment with fetal bovine serum or exogenous expression of cellular oncogene Bcl-xL prevented CG-4 cells from MHV-induced cell death. Significantly, overexpression of Bcl-xL alone was sufficient to convert acute to persistent, nonproductive infection in CG-4 cells. This finding indicates that intracellular factors rather than viral components play a critical role in establishing viral persistence in CNS cells. Although viral genomic RNAs continuously persisted in Bcl-xL-expressing CG-4 cells over 10 passages, infectious virus could no longer be isolated beyond 2 passages of the cell. Such a phenomenon resembles the persistent MHV infection in animal CNS. Thus, the establishment of a persistent, nonproductive infection in CG-4 cells may provide a useful in vitro model for studying viral persistence in animal CNS. The data also suggest that direct virus-host cell interaction is one of the underlying mechanisms that regulate viral persistence in CNS cells.  相似文献   

15.
The recent emergence of novel pathogenic human and animal coronaviruses has highlighted the need for antiviral therapies that are effective against a spectrum of these viruses. We have used several strains of murine hepatitis virus (MHV) in cell culture and in vivo in mouse models to investigate the antiviral characteristics of peptide-conjugated antisense phosphorodiamidate morpholino oligomers (P-PMOs). Ten P-PMOs directed against various target sites in the viral genome were tested in cell culture, and one of these (5TERM), which was complementary to the 5' terminus of the genomic RNA, was effective against six strains of MHV. Further studies were carried out with various arginine-rich peptides conjugated to the 5TERM PMO sequence in order to evaluate efficacy and toxicity and thereby select candidates for in vivo testing. In uninfected mice, prolonged P-PMO treatment did not result in weight loss or detectable histopathologic changes. 5TERM P-PMO treatment reduced viral titers in target organs and protected mice against virus-induced tissue damage. Prophylactic 5TERM P-PMO treatment decreased the amount of weight loss associated with infection under most experimental conditions. Treatment also prolonged survival in two lethal challenge models. In some cases of high-dose viral inoculation followed by delayed treatment, 5TERM P-PMO treatment was not protective and increased morbidity in the treated group, suggesting that P-PMO may cause toxic effects in diseased mice that were not apparent in the uninfected animals. However, the strong antiviral effect observed suggests that with further development, P-PMO may provide an effective therapeutic approach against a broad range of coronavirus infections.  相似文献   

16.
We examined the duration and strain-specificity of immunity to enterotropic mouse hepatitis virus (MHV). Two strains of enterotropic MHV (MHV-Y and MHV-RI) were determined to be distinct virus strains by serum neutralization and by enzyme immunoassay. BALB/cByJ mice immunized by oral infection with either MHV-Y or MHV-RI developed serum MHV IgG titers that remained stable for more than 6 months. The animals were protected from reinfection with the homologous virus strain at 1 and 6 months after an initial immunizing infection, based on intestinal histology and polymerase chain reaction for a 375-base-pair segment of the membrane glycoprotein gene. Immunity was also fully protective against challenge with the heterologous strain 1 month after initial immunization and partly protective after 6 months. Maternally-derived passive immunity prevented MHV infection in 1-week-old pups challenged with the homologous strain of MHV, and pups challenged with the heterologous virus strain were partially protected.  相似文献   

17.
Spleen cells from uninfected control mice selectively lysed BALB/c 3T3 fibroblasts infected with mouse hepatitis virus (MHV), a murine coronavirus. Lysis of infected cells occurred within 3 hr, and histocompatibility between effector and target cells was not required. This natural, cell-mediated, virus-associated cytotoxicity differed from NK cell- and T cell-mediated lysis. Spleen cells from animals infected with MHV were enriched in NK activity and were more cytotoxic to YAC-1 target cells, but did not show enhanced cytotoxicity for MHV-infected target cells. Spleen cells from beige mice, which are deficient in NK cell activity, were able to lyse MHV-infected target cells, as were spleen cells from nude mice, which are deficient in T cell activity. Lysis of MHV-infected target cells could be mediated by cells from the spleen and, to a lesser extent, by cells from the bone marrow, but not by resident peritoneal cells or thymocytes. We suggest the term "virus killer (VK) activity" for this phenomenon. VK activity of splenocytes from different mouse strains correlated with the ability of the splenocytes to bind purified radiolabeled MHV virions. MHV virions caused agglutination of spleen leukocytes from susceptible mouse strains, indicating that leukocyte agglutination or adsorption may provide a useful assay for coronaviruses such as MHV which lack hemagglutinating activity. SJL mouse splenocytes did not bind MHV and did not lyse infected targets. MHV bound relatively well to splenocytes of other mouse strains, but poorly to thymocytes and erythrocytes. Binding of MHV to leukocytes was not influenced by 6 mM EDTA or EGTA, indicating a lack of requirement for Mg++ or Ca++. VK activity was also resistant to EDTA and EGTA, in contrast to NK activity, which was sensitive to those chelating agents. VK activity was also unaffected by actinomycin D, cycloheximide, or puromycin, indicating that new protein synthesis was not required for lysis. Antibody to interferon-alpha/beta did not block lysis, nor was there substantially enhanced lysis mediated by leukocytes from mice infected with virus and thus exposed to high levels of interferon. VK activity was blocked by antibody directed against the peplomeric glycoprotein E2 of MHV. VK activity required infected target cells, because cells with adsorbed MHV virions were not lysed by splenocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Theiler's murine encephalomyelitis virus is responsible for a chronic inflammatory demyelinating disease of the central nervous system of the mouse. The disease is associated with persistent viral infection of the spinal cord. Some strains of mice are susceptible to viral infection, and other strains are resistant. The effect of the genetic background of the host on viral persistence has not been thoroughly investigated. We studied the amount of viral RNA in the spinal cords of 17 inbred strains of mice and their F1 crosses with the SJL/J strain and observed a large degree of variability among strains. The pattern of viral persistence among mouse strains could be explained by the interaction of two loci. One locus is localized in the H-2D region of the major histocompatibility complex, whereas the other locus is outside this complex and is not linked to the Tcrb locus on chromosome 6.  相似文献   

19.
Laboratory mice serve as important models in biomedical research. Monitoring these animals for infections and infestations and excluding causative agents requires extensive resources. Despite advancements in detection and exclusion over the last several years, these activities remain challenging for many institutions. The infections and infestations present in laboratory mouse colonies are well documented, but their mode of introduction is not always known. One possibility is that wild rodents living near vivaria somehow transmit infections to and between the colonies. This study was undertaken to determine what infectious agents the wild mice on the University of Pennsylvania (Philadelphia) campus were carrying. Wild mice were trapped and evaluated for parasites, viruses, and selected bacteria by using histopathology, serology, and PCR-based assays. Results were compared with known infectious agents historically circulating in the vivaria housing mice on campus and were generally different. Although the ectoparasitic burdens found on the 2 populations were similar, the wild mice had a much lower incidence of endoparasites (most notably pinworms). The seroprevalence of some viral infections was also different, with a low prevalence of mouse hepatitis virus among wild mice. Wild mice had a high prevalence of murine cytomegalovirus, an agent now thought to be confined to wild mouse populations. Helicobacter DNA was amplified from more than 90% of the wild mice (59% positive for H. hepaticus). Given the results of this study, we conclude that wild mice likely are not a source of infection for many of the agents that are detected in laboratory mouse colonies at the University of Pennsylvania.Abbreviations: EDIM, epizootic diarrhea of infant mice; MAV, mouse adenovirus; MCMV, murine cytomegalovirus; MFIA, multiplex fluorescent immunoassay; MHV, mouse hepatitis virus; MNV, murine norovirus; MPV, mouse parvovirus; MVM, minute virus of mice; TMEV, Theiler mouse encephalomyelitis virusLaboratory mice constitute the most popular animal models used in biomedical research today. Like all animals, even mice housed in so-called ‘barrier’ facilities are subject to infection. The infectious agents and organisms present in laboratory mouse colonies on the University of Pennsylvania campus are known and documented by the University Laboratory Animal Resources Diagnostic Services Unit. Sentinel mice that are housed on soiled bedding from resident mouse cages are screened onsite at 3 quarterly intervals for fur mites and pinworms and for a panel of viral infections: mouse hepatitis virus (MHV); epizootic diarrhea of infant mice (EDIM) virus; minute virus of mice (MVM); mouse parvovirus (MPV); Theiler mouse encephalomyelitis virus (TMEV); and Sendai virus. Comprehensive bacteriology and parasitology assessments are performed on all sentinels once yearly during the fourth quarter. In addition, these sentinels are screened serologically for 18 viral infections, Mycoplasma pulmonis, cilia-associated respiratory bacillus, and Encephalitozoon cuniculi and by PCR for Helicobacter spp. and M. pulmonis. Mesenteric lymph nodes from sentinels monitoring barrier-maintained colonies are also screened once yearly by PCR for MPV. In addition, University Laboratory Animal Resources maintains a quarantine facility for rodents received from nonapproved sources (sources other than selected commercial breeding facilities). Mice entering the quarantine facility are housed in semirigid isolators, and contact sentinels are tested for all of the agents included in the fourth quarter comprehensive health assessment described, including PCR for MPV.Wild mice (Mus musculus) could serve as a source of infection or infestation in laboratory mouse colonies, although little is known about the prevalence of infectious diseases in wild mouse populations in Philadelphia. However, we have surveyed wild mouse populations in other geographic areas.1,9 Significant seroprevalence of MHV, EDIM, murine cytomegalovirus (MCMV), parvovirus, and thymic virus (murid herpesvirus 3), in addition to the presence of many types of parasites and bacteria including Myocoptes spp., Myobia spp., Radfordia spp., Spironucleus spp., Giardia spp., Pasteurella pneumotropica, Pseudomonas spp., and Leptospira spp. were found in wild populations of mice from farms in southeastern Connecticut.1 Studies of wild mouse (Mus domesticus) populations in the cereal-growing region of southeastern Australia revealed a high serologic prevalence of MHV, EDIM, and MCMV, as well as significant seroprevalence of mouse adenovirus (MAV), MPV, and reovirus type 3.9The goal of the current study was to expand preliminary data obtained from wild mice trapped in the University City district of Philadelphia in 2005 (which are included with the current results from a 2007 survey). These data document the prevalence of various infectious agents and parasites commonly found in populations of wild mice on the University of Pennsylvania campus in Philadelphia and are discussed in the context of infectious disease outbreaks in campus vivaria over the past 5 y.  相似文献   

20.
We previously showed that an intraperitoneal infection with mouse hepatitis virus (MHV) resulted in acute hepatic failure accompanying extremely elevated viral growth in the liver in interferon-gamma-deficient BALB/c (BALB-GKO), but not C57BL/6 (B6-GKO) mice. To examine the basis of the strain difference against MHV infection in interferon-gamma-deficient mice, viral replication in primary hepatocyte cultures from BALB/c and B6 mice with or without the IFN-gamma gene was compared in vitro. The MHV replication in BALB/c hepatocytes with or without the IFN-gamma gene was significantly higher than that in B6 hepatocytes with or without the IFN-gamma gene, suggesting that there is a strain difference in MHV replication in hepatocytes. Since a significant difference in MHV replication in hepatocytes was not observed between wild type and IFN-gamma-deficient mice of the same genetic background, the phenomenon is thought to be independent of IFN-gamma. However, pretreatment of hepatocytes with recombinant mouse interferon-gamma inhibited MHV replication in a dose-dependent fashion. The results are discussed with respect to the pathology of MHV infection in mice with or without the IFN-gamma gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号