首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
WEHI-3 cell-conditioned medium with the capacity to stimulate megakaryocyte colony formation was separated by Sephadex G-150 column chromatography. The development of colonies containing megakaryocytes was observed only when mixing experiments were performed. Individual fractions did not support megakaryocyte colony growth. The two factors in WEHI-3 CM required for megakaryocyte colony growth had apparent average molecular weights of 35,000 daltons (megakaryocyte CSF) and 100,000 daltons (megakaryocyte potentiator). The results were confirmed in serum-free conditions in which colonies were directly identified in the cultures by acetylcholinesterase staining. Two growth factors may be necessary for the genesis of megakaryocytic colonies.  相似文献   

2.
The effects of recombinant cytokines on the ploidy of human megakaryocytes derived from megakaryocyte progenitors were studied using serum-free agar cultures. Nonadherent and T cell-depleted marrow cells were cultured for 14 days. Megakaryocyte colonies were identified in situ by the alkaline phosphatase anti-alkaline phosphatase technique, using monoclonal antibody against platelet IIb/IIIa. The ploidy of individual megakaryocytes in colonies was determined by microfluorometry with DAPI (4',6-diamidino-2-phenylindole) staining. Recombinant human interleukin 3 (rhIL-3) and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) supported megakaryocyte colony formation in a dose-dependent manner. However, both rhIL-3 and rhGM-CSF had no definite ability to increase the ploidy values. Recombinant human erythropoietin (rhEpo) or recombinant human macrophage colony-stimulating factor (rhM-CSF) by itself did not stimulate the growth of megakaryocyte progenitors. rhEpo or rhM-CSF, however, stimulated increases in the number, size and ploidy values of megakaryocyte colonies in the presence of rhIL-3 or rhGM-CSF. Recombinant human interleukin 6 (rhIL-6) showed no capacity to generate or enhance megakaryocyte colony formation when added to the culture alone or in combination with rhIL-3. rhIL-6, however, increased the ploidy values in colonies when added with rhIL-3. These results show that rhEpo, rhM-CSF and rhIL-6 affect endomitosis and that two factors are required for megakaryocyte development.  相似文献   

3.
In order to clarify the mechanism(s) of increased splenic hematopoiesis noted in lipopolysaccharide (LPS)-injected mice, the effects of spleen cell-conditioned medium (SPCM) on megakaryocyte colony (CFU-meg) formation and early erythroid (BFU-e) differentiation were investigated. After spleen cells from LPS-injected mice were incubated for 3 days, the SPCM was assayed for megakaryocyte colony-stimulating factor (Meg-CSF) in CFU-meg assay and for burst-promoting activity (BPA) and erythropoietin (Epo) in erythroid colony assays (i.e., CFU-e, BFU-e). Colony formation of CFU-meg and BFU-e peaked with the addition of 30 and 10-15% SPCM, respectively. Spleen cells from LPS-injected mice produced Meg-CSF and BPA when compared with controls. However, conditioned medium from spleen cells depleted of phagocytic cells had low Meg-CSF and BPA. SPCM did not contain detectable quantities of Epo. It appears likely that local splenic production of Meg-CSF and BPA may affect proliferation of CFU-meg and erythroid progenitor cells in the spleen.  相似文献   

4.
Abstract. The kinetics of megakaryocyte formation from mouse bone marrow cells in semi-solid medium was studied directly in the culture dish by staining the cells for acetylcholinesterase after drying the cultures. A WEHI-3 cell-conditioned medium (WEHI-3 CM) was used as a general source of stimulus for megakaryocyte colony formation. The addition of peritoneal exudate supernatant as well as WEHI-3 CM increased the frequency of megakaryocyte colonies detected. Colonies containing acetylcholinesterase-positive cells were first detected at day 3. Maximum numbers of 25–40 megakaryocyte colonies per 105 nucleaet mouse bone marrow cells were observed from days 7 to 11. The mean number of cells within each colony increased progressively with time of culture, and a modal range of 11–20 cells was obtained by day 7. Between 3 and 200 cells per colony were generally detected. A continuous distribution of the number of megakaryocytes per colony suggests that the clonable precursor cells are not synchronized either with respect to maturation stage or with respect to their capability to undergo nuclear endoreduplication. The addition of peritoneal exudate supernatant to the cell cultures increased the DNA levels of megakaryocytes grown in the presence of WEHI-3 CM but did not affect the number of cells per colony. The DNA content of colony megakaryocytes was measured after staining the cells with Feulgen reagent. A modal DNA value of 8 N was observed between days 4 and 7 for megakaryocytes stimulated with WEHI-3 CM. In the presence of both WEHI-3 CM and peritoneal exudate supernatant, the DNA content of megakaryocytes increased with the time of cell culture. Modal DNA values increased from 8 N at days 4 and 5, to 16 N by day 6. In these optimally stimulated cultures, 44% of colony megakaryocytes were 32 N or greater, a proportion higher than in normal bone marrow, but similar to that seen in the marrow of acutely thrombocytopenic animals. It is concluded that megakaryocytopoiesis in cell cultures is not a strictly controlled process with respect to cell division and endomitosis and that when certain culture conditions are employed, megakaryocyte development in vitro might reflect that seen in a stressed animal condition.  相似文献   

5.
The in vivo effect of human platelet factor 4 (PF4) on murine megakaryocytopoiesis and thrombopoiesis was studied. Administration of PF4 induced a dose-dependent decrease in the numbers of megakaryocytes and their progenitor cells (CFU-MK), continuing for 1 week after the injection. However, the size of megakaryocytes and their colonies was not changed following PF4 injection. Platelet levels were significantly decreased at days 3-4. The number of CFU-GM was decreased at days 1-2. White blood cells and hemoglobin were unaffected by PF4. These data indicate that PF4 inhibits megakaryocyte and platelet production in vivo by acting on the early stage of megakaryocyte development.  相似文献   

6.
R Leven 《Blood cells》1989,15(1):306-313
Successful isolation of guinea pig megakaryocytes in large numbers was first achieved with a combination of techniques, taking sequential advantage of the low relative densities and large diameters of most megakaryocytes. Several laboratories have made minor improvements, but this approach retains the disadvantage of losing a significant fraction of the megakaryocyte population, the small immature ones. Counterflow centrifugal elutriation has been shown to eject cells from a chamber progressively, according to their sizes. Because almost all the megakaryocytes are bigger than the other marrow cells, the megakaryocytes can be retained while rejecting the contaminants. With this technology, yields of 1.4-2.0 x 10(6) megakaryocytes from one guinea pig are routine, recoveries have been 93%-94% of the input number of megakaryocytes, and final purities now average 72%. A split-specimen comparison with our previous method found elutriation to provide much greater yield and recovery with at least as great a purification as the density-velocity combination. This new technique was easily adapted to isolation of megakaryocytes in single aspirates from normal human marrow. Fifty-fold purification with near total recovery and a yield of 27,000 megakaryocytes per donor allows easy and reliable cytologic studies. Elutriation appears to be the current method of choice for isolation of megakaryocytes.  相似文献   

7.
Effect of insulin on murine megakaryocytopoiesis in a liquid culture system   总被引:2,自引:0,他引:2  
To examine the influence of insulin on megakaryocytopoiesis, we tested its effect on murine bone marrow cultures in a liquid culture system. In the presence of pokeweed mitogen-stimulated spleen cell conditioned medium in culture, insulin markedly enhanced megakaryocyte colony formation and increased the number and size of free megakaryocytes seen after 7 days. Many of the cells in cultures with insulin, however, were classified as immature, since they had a basophilic cytoplasm, a low cytoplasmic/nuclear ratio and low acetylcholinesterase activity. It is suggested that insulin potentiates murine marrow megakaryocytopoiesis in vitro, but that this is not accompanied by differentiation of the cells from the immature to mature state.  相似文献   

8.
L Kass 《Stain technology》1985,60(4):233-237
Using the acrylic textile dye Lycramine brilliant blue JL, mature and immature megakaryocytes from human bone marrow specimens stained metachromatically bright lavender. This coloration was not observed in other types of bone marrow cells. After digestion with either diastase or ribonuclease, subsequent staining of marrow specimens did not reveal a significant diminution of the intensity of staining of megakaryocytes. However, after incubation with hyaluronidase followed by staining with Lycramine brilliant blue JL, staining of megakaryocyte cytoplasm was either imperceptible or very pale blue. Accordingly, at least one of the substances responsible for the staining reaction is acid mucopolysaccharide in the cytoplasm of megakaryocytes. With further experience and comparison with established immunologic and cytochemical techniques, staining of megakaryocytes with Lycramine brilliant blue JL may be a useful addition to the cytochemistry of blood and bone marrow cells.  相似文献   

9.
Cellular and humoral influences of T lymphocytes on human megakaryocyte colony formation in vitro were assessed by using a microagar system. Megakaryocyte colony formation from nonadherent low density T lymphocyte-depleted (NALDT-) bone marrow cells was increased significantly after the addition of aplastic anemia serum (AAS) or purified megakaryocyte colony-stimulating factor (Meg-CSF). The addition of conditioned medium obtained from phytohemagglutinin-stimulated T lymphocytes replaced, at least partially, the requirement for AAS or purified Meg-CSF for the growth of megakaryocyte colonies. The cellular influence of T lymphocytes and T lymphocyte subsets on megakaryocyte colony formation was assessed by removing either T cells from nonadherent peripheral blood mononuclear cells with monoclonal OKT4, OKT8, or OKT3 antibodies plus complement, or by adding back populations of bone marrow or blood T4+ or T8+ lymphocytes, isolated by means of fluorescence-activated cell sorting, respectively, to NALDT--bone marrow or -blood cells. When sorted T cell subpopulations were added to a fixed number of NALDT--bone marrow or -peripheral blood cells in the presence of AAS or Meg-CSF, T4+ cells enhanced megakaryocyte colony formation and T8+ cells decreased it. These studies demonstrate that although the stimulation of megakaryocytic progenitor cells by Meg-CSF may not require the presence of monocytes or T lymphocytes, T4+ lymphocytes enhance and T8+ lymphocytes down-regulate megakaryocyte colony formation induced by Meg-CSF. These observations suggest that the immune system is capable of modulating the proliferative response of human megakaryocytic progenitor cells to Meg-CSF.  相似文献   

10.
P A de Alarcon 《Blood cells》1989,15(1):173-185
Megakaryocyte colony-stimulating activity (Mk-CSA) is required for in vitro megakaryocyte colony formation. Its in vivo significance in megakaryocytopoiesis is unknown. We studied 12 patients undergoing bone marrow transplantation (BMT) at our institution. The bone marrow megakaryocyte progenitor cells (CFU-Mk), the serum level of Mk-CSA, and the platelet count on the 28th day after BMT were studied. Patients with elevated Mk-CSA levels had less CFU-Mk in their bone marrow than did patients with a normal or decreased Mk-CSA (p less than 0.01). Animal experiments using murine models have documented that several purified molecules including erythropoietin, multi-CSF and GM-CSF possess Mk-CSA. The in vitro Mk-CSF of WEHI-3-conditioned medium is multi-CSF. The in vivo significance for megakaryocytopoiesis of these factors is not clear. In the human system, Mk-CSA is increased in conditions with decreased bone marrow megakaryocytes. Recombinant human or primate CSFs have in vitro Mk-CSA utilizing both human and murine cells as targets. However, the presence of these activities does not fully explain the Mk-CSA in human serum rich in Mk-CSA. The precise regulation of human blood cell levels and the studies discussed suggest that there is a specific Mk-CSF that responds to in vivo changes in megakaryocyte numbers. Proof of its physiologic role awaits the isolation of a pure factor.  相似文献   

11.
The lipid composition and metabolism of isolated guinea pig megakaryocyte subgroups at various stages of maturation were investigated. Three groups were studied: 1) 67% of megakaryocytes in Group A were immature; 2) Group B was heterogeneous and contained both immature and mature subgroups of megakaryocytes; 3) 92% of megakaryocytes in Group C were mature. Lipid composition was determined by thin-layer chromatography, lipid-phosphorus, and gas-liquid chromatography. Cholesterol, ceramide, and de novo fatty acid synthesis were evaluated with [14C]acetate. [14C]Glycerol was used to assess de novo phospholipid synthesis. 14C-Labeled fatty acids were used to evaluate fatty acid uptake. The phospholipid and cholesterol content was found to be four times greater in mature megakaryocytes than that in immature megakaryocytes, which paralleled the protein content and volume of mature and immature cells. The cholesterol-phospholipid ratio was similar and there were no differences in the phospholipid species in the three groups. Phospholipid and cholesterol synthesis were established in immature megakaryocytes and persisted at about the same level in mature megakaryocytes. The uptake of arachidonic and palmitic acids also occurred primarily in immature cells, while the de novo synthesis of palmitic acid occurs predominantly in mature megakaryocytes. There was an inverse relationship between the uptake of exogenous palmitic acid and fatty acid synthesis, but the uptake of palmitic acid primarily inhibited fatty acid synthesis in mature megakaryocytes. There were differences in the acylation of phospholipid species with arachidonic acid in megakaryocytes at different stages of maturation since the acylation of phosphatidylcholine occurred primarily in immature megakaryocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The in vitro cloning technique for detecting megakaryocyte precursor cells was employed to compare stimuli known to influence megakaryocytopoiesis. Preparations of thrombopoietic stimulating factor (TSF) did not directly stimulate the growth of megakaryocyte colonies (CFU-m) but increased the frequency of CFU-m when TSF was added to the cultures with a constant amount of megakaryocyte colony stimulating factor. Platelets or platelet homogenates did not influence the frequency of CFU-m or the size of individual colonies. Analysis of cell surface properties of megakaryocytes obtained either by isolation from bone marrow or from in vitro colonies revealed species differences. The possibility that megakaryocytopoiesis and platelet release are regulated both within the marrow as well as by humoral factors is discussed.  相似文献   

13.
Megakaryocytopoiesis and thrombocytopoiesis result from the interactions between hematopoietic progenitor cells, humoral factors, and marrow stromal cells derived from mesenchymal stem cells (MSCs) or MSCs directly. MSCs are self-renewing marrow cells that provide progenitors for osteoblasts, adipocytes, chondrocytes, myocytes, and marrow stromal cells. MSCs are isolated from bone marrow aspirates and are expanded in adherent cell culture using an optimized media preparation. Culture-expanded human MSCs (hMSCs) express a variety of hematopoietic cytokines and growth factors and maintain long-term culture-initiating cells in long-term marrow culture with CD34(+) hematopoietic progenitor cells. Two lines of evidence suggest that hMSCs function in megakaryocyte development. First, hMSCs express messenger RNA for thrombopoietin, a primary regulator for megakaryocytopoiesis and thrombocytopoiesis. Second, adherent hMSC colonies in primary culture are often associated with hematopoietic cell clusters containing CD41(+) megakaryocytes. The physical association between hMSCs and megakaryocytes in marrow was confirmed by experiments in which hMSCs were copurified by immunoselection using an anti-CD41 antibody. To determine whether hMSCs can support megakaryocyte and platelet formation in vitro, we established a coculture system of hMSCs and CD34(+) cells in serum-free media without exogenous cytokines. These cocultures produced clusters of hematopoietic cells atop adherent MSCs. After 7 days, CD41(+) megakaryocyte clusters and pro-platelet networks were observed with pro-platelets increasing in the next 2 weeks. CD41(+) platelets were found in culture medium and expressed CD62P after thrombin treatment. These results suggest that MSCs residing within the megakaryocytic microenvironment in bone marrow provide key signals to stimulate megakaryocyte and platelet production from CD34(+) hematopoietic cells.  相似文献   

14.
The effects of interleukin-11 (IL-11) and thrombopoietin (TPO) on murine megakaryocytopoiesis were studied using a serum-free culture system. Acting alone, both IL-11 and TPO increased the number of acetylcholinesterase (AchE)(+)cells (megakaryocytes), the latter being more potent than the former. TPO, but not IL-11, increased the mean AchE activity per megakaryocyte (AchE activity/megakaryocyte). TPO increased both the number of megakaryocytes with high ploidy, and of those with low ploidy. In contrast, IL-11 increased only the number of megakaryocytes with high ploidy. The effect of TPO on megakaryocyte ploidy was stronger than that of IL-11. Both IL-11 and TPO increased the proportion of large megakaryocytes, but the latter was more potent than the former. While the stimulatory effects of IL-11 and TPO on the number of megakaryocytes were enhanced by IL-3 or stem cell factor (SCF), synergism of IL-11 or TPO with IL-3 or SCF in stimulating AchE activity/megakaryocyte was inconsistent. IL-11 and TPO stimulated the formation of colony-forming units of megakaryocyte in the presence of IL-3, but not alone, with similar maximum colony numbers for both cytokines. Our findings thus demonstrate that IL-11 principally stimulates megakaryocyte maturation rather than the proliferation of megakaryocytes, whereas TPO stimulates both.  相似文献   

15.
Ex vivo generation of megakaryocytes from hematopoietic stem cells (HSCs) is crucial to HSC research and has important clinical potential for thrombocytopenia patients to rapid platelet reconstruction. In this study, factorial design and steepest ascent method were used to screen and optimize the effective cytokines (10.2 ng/ml TPO, 4.3 ng/ml IL-3, 15.0 ng/ml SCF, 5.6 ng/ml IL-6, 2.8 ng/ml FL, 2.8 ng/ml IL-9, and 2.8 ng/ml GM-CSF) in megakaryocyte induction medium that facilitate ex vivo megakaryopoiesis from CD34+ cells. After induction, the maximum fold expansion for accumulated megakaryocytes was almost 5000-fold, and the induced megakaryocytes were characterized by analysis of gene expression, polyploidy and platelet activation ability. Furthermore, the combination of megakaryocyte induction medium and HSC expansion medium can induce and expand a large amount of functional megakaryocytes efficiently, and might be a promising source of megakaryocytes and platelets for cell therapy in the future.  相似文献   

16.
For 18 mo, we derived 18 cell lines from 11 donors with various clinical profiles ranging from normal to leukemic. Suspension cultures were initiated with 1 X 10(6) mononuclear blood cells/ml of nutrient medium containing 10% human serum and 10% lectin-stimulated human lymphocyte conditioned medium. The cultures were monitored weekly by morphological analyses of Wright-Giemsa-stained cell preparations. All successful cultures showed a significant decline in viability during the first 3-4 wk with rate "lymphoid" cells observed in mitosis. Within the next 2 wk, the proliferating cells gave rise to a rapidly expanding population of mononuclear cells. As the cultures expanded, cell morphology became heterogeneous with respect to cell size and nuclear ploidy, with an accumulation of giant multinuclear cells that were suggestive of megakarocytes. Even though the cells did not have the classical morphology of mature platelet-forming megakaryocytes, 90% of the cells within a cell line were positive by direct or indirect immunofluorescence for the platelet membrane glycoproteins IIb and IIIa; for surface markers HLA-Dr and B2-microglobulin; for intracellular platelet-derived growth factor and platelet factor IV; and for membrane affinity or binding with serum platelet-derived growth factor and platelet factor IV. These results suggest that a blood precursor cell, most likely a primitive megakaryoblast, was isolated from the peripheral blood and was provided with an optimal culture environment for sustained growth. These cells did not mature to a more differentiated stage, perhaps owing to regulatory factor deficiencies in this in vitro system. The remarkable frequency of obtaining cell lines with megakaryocyte properties from normal peripheral blood and the capacity of some normal donors to repeatedly yield these cell lines make this cell culture system indeed unique by being selective for putative megakaryocyte precursors.  相似文献   

17.
We analyzed the release of activities capable of stimulating the in vitro growth of human hemopoietic progenitor cells by long-term cultured T cell growth factor (TCGF)-dependent human T lymphocytes. Seven cell lines tested produced colony-stimulating activity (CSA) as well as burst-promoting activity (BPA). The CSA stimulated primarily the growth of the cells forming colonies after 14 days of incubation. In addition the supernatants from these seven T-cell lines showed the ability to induce the in vitro growth of mixed granulocyte, erythroid, megakaryocyte, macrophage colonies (CFU-GEMM). The release of hemopoietic factors did not depend on the presence of accessory cells or phytohemagglutinin or serum during the incubation for factor production. In six of the T cell lines the majority of the cells were reactive to the OKT 8 monoclonal antibody (MoAb), whereas one cell line contained mostly OKT 4+ cells. Suppressor activity was detected in three tested OKT 8+ cell lines, while the one OKT 4+ displayed helper activity. All cell lines produced hemopoietic factors with equal efficiency. These results indicate that factors affecting human hematopoiesis are produced by normal T lymphocytes in long-term culture and this property is not related to the helper or suppressor activity of the cultured cells.  相似文献   

18.
A factor able to stimulate the proliferation and differentiation of multipotential stem cells and progenitor cells of the granulocyte-macrophage, eosinophil, and erythroid lineages as well as being able to maintain factor-dependent cell lines in culture has been purified from pokeweed mitogen-stimulated mouse spleen cell-conditioned medium. The factor was purified over 2 million-fold by sequential fractionation using salting out chromatography, chromatography on phenyl-Sepharose, gel filtration on Sephadex G-75, ion exchange chromatography on DEAE-Sepharose, reverse-phase high performance liquid chromatography on a phenyl-silica column, and gel permeation high performance liquid chromatography. All of the biological activities ascribed to the multipotential colony-stimulating factor co-fractionated through all steps, and the other known mouse-active hemopoietic regulator in pokeweed mitogen-stimulated mouse spleen cell-conditioned medium, granulocyte-macrophage colony-stimulating factor, was separated at the ion exchange step. Two protein species having Mr = 24,000 and 19,000 were visualized by silver-staining of sodium dodecyl sulfate-polyacrylamide gels of the purified factor. Both species migrated coincidently with the biological activities. The factor was active at a half-maximal concentration of 1 X 10(-13) M when assayed on a factor-dependent cell line.  相似文献   

19.
Multiple levels of regulation of megakaryocytopoiesis   总被引:3,自引:0,他引:3  
A working hypothesis for the regulation of megakaryocytopoiesis is described on the basis of current data. The hypothesis proposes that in vivo megakaryocytes are generated by 1) the expansion of clonable progenitor cells into immature megakaryocytes by locally produced (and regulated) interleukin-3 (IL-3) and 2) the development and maturation of immature megakaryocytes by a dual system; by a lineage specific mechanism involving thrombopoietic stimuli in the steady state and thrombocytopenic conditions, and by a lineage nonspecific mechanism via IL-3 in damaged or reconstituting marrow. The hypothesis predicts that if IL-3 is a significant in vivo regulator of megakaryocyte formation and development, receptor for IL-3 should be present on megakaryocytes and may be vestigially on platelets. Small but significant levels of 125I IL-3 were found to bind to platelets from normal mice. The level of binding on platelets was found to be enhanced sevenfold from mice that had received high levels of irradiation followed by bone marrow transplantation. This contrasted with a twofold increase in the level of binding to platelets from mice made acutely thrombocytopenic with antiplatelet serum. The data suggest that IL-3 may be involved in the in vivo regulation of murine megakaryocytopoiesis and may be a significant factor in rebound thrombopoiesis following bone marrow damage.  相似文献   

20.
Colony-stimulating factor, which specifically stimulates mouse bone marrow cells to proliferate in vitro and generate colonies of granulocytes, or macrophages, or both, was purified 3500-fold from mouse lung-conditioned medium. Analysis by discontinuous polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate indicated that there was a single protein component. All of the colony-stimulating activity was coincident with the protein band. The molecular weight of colony-stimulating factor estimated by gel filtration was approximately 29,000 and by electrophoresis approximately 23,000. The specific activity of purified colony-stimulating factor from mouse lung-conditioned medium bound to concanavalin A-Sapharose, indicating that it is a glycoprotein. The small percentage of colony-stimulating factor in mouse lung-conditioned medium which did not bind to concanavalin A-Sepharose appeared to represent molecules which lacked the carbohydrate moieties required for binding to this lectin. It was necessary to include low concentrations (less than 0.01%, v/v) of polymers such as gelatin and polyethylene glycol, or nonionic detergents such as Triton X-100, in all of the buffers used throughout the purification scheme, otherwise colony-stimulating factor was lost from solution. At high concentrations (greater than 20 mug/ml) the factor stimulated the formation of granulocytic, macrophage, and mixed colonies from C57BL mouse bone marrow cells. As the concentration of purified colony-stimulating factor was decreased, the frequency of colonies containing granulocytes also decreased. At low concentrations of colony-stimulating factor (less than 70 pg/ml) only macrophage colonies were stimulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号