首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An assay describing conditions for the maturation of single immature megakaryocytes in vitro is reported. Enriched populations of small, relatively immature megakaryocytes have been found to develop into single, mature megakaryocytes by 60 hours in semisolid agar cultures. Continued incubation of these cells did not lead to the formation of colonies within 5–7 days. Maturation was indicated by increasing cell size and cytoplasmic and acetylcholinesterase content. Factors stimulating the development of immature megakaryocytes were found in preparations of human embryonic kidney cell-conditioned media (a source of in vivo Thrombopoietic Stimulatory Factor), peritoneal exudate cell-conditioned medium, lung-conditioned medium, or bone marrow cellular sources of activity (adherent cells or cells that sediment at 5–6 mm hr-1). Immature megakaryocytes cultured serum free responded to sources of an auxiliary megakaryocyte potentiating activity by developing into single, large megakaryocytes but did not respond to a megakaryocyte colony-stimulating factor devoid of detectable potentiator activity present in WEHl-3-conditioned medium. In contrast, serum-free proliferation of the megakaryocyte progenitor cell required both megakaryocyte colony-stimulating factor and the auxiliary potentiator activity. In the presence of megakaryocyte colony-stimulating factor alone, progenitor cells did not form colonies of easily detectable megakaryocytes. However, groups of cells comprised entirely of small acetylcholinesterase containing immature megakaryocytes were observed, thus establishing that megakaryocyte colony development passes through a stage of immature cells prior to detectable megakaryocyte development and that some acetylcholinesterase-containing cells can undergo cellular division.  相似文献   

2.
WEHI-3 cell-conditioned medium with the capacity to stimulate megakaryocyte colony formation was separated by Sephadex G-150 column chromatography. The development of colonies containing megakaryocytes was observed only when mixing experiments were performed. Individual fractions did not support megakaryocyte colony growth. The two factors in WEHI-3 CM required for megakaryocyte colony growth had apparent average molecular weights of 35,000 daltons (megakaryocyte CSF) and 100,000 daltons (megakaryocyte potentiator). The results were confirmed in serum-free conditions in which colonies were directly identified in the cultures by acetylcholinesterase staining. Two growth factors may be necessary for the genesis of megakaryocytic colonies.  相似文献   

3.
Effect of insulin on murine megakaryocytopoiesis in a liquid culture system   总被引:2,自引:0,他引:2  
To examine the influence of insulin on megakaryocytopoiesis, we tested its effect on murine bone marrow cultures in a liquid culture system. In the presence of pokeweed mitogen-stimulated spleen cell conditioned medium in culture, insulin markedly enhanced megakaryocyte colony formation and increased the number and size of free megakaryocytes seen after 7 days. Many of the cells in cultures with insulin, however, were classified as immature, since they had a basophilic cytoplasm, a low cytoplasmic/nuclear ratio and low acetylcholinesterase activity. It is suggested that insulin potentiates murine marrow megakaryocytopoiesis in vitro, but that this is not accompanied by differentiation of the cells from the immature to mature state.  相似文献   

4.
P A de Alarcon 《Blood cells》1989,15(1):173-185
Megakaryocyte colony-stimulating activity (Mk-CSA) is required for in vitro megakaryocyte colony formation. Its in vivo significance in megakaryocytopoiesis is unknown. We studied 12 patients undergoing bone marrow transplantation (BMT) at our institution. The bone marrow megakaryocyte progenitor cells (CFU-Mk), the serum level of Mk-CSA, and the platelet count on the 28th day after BMT were studied. Patients with elevated Mk-CSA levels had less CFU-Mk in their bone marrow than did patients with a normal or decreased Mk-CSA (p less than 0.01). Animal experiments using murine models have documented that several purified molecules including erythropoietin, multi-CSF and GM-CSF possess Mk-CSA. The in vitro Mk-CSF of WEHI-3-conditioned medium is multi-CSF. The in vivo significance for megakaryocytopoiesis of these factors is not clear. In the human system, Mk-CSA is increased in conditions with decreased bone marrow megakaryocytes. Recombinant human or primate CSFs have in vitro Mk-CSA utilizing both human and murine cells as targets. However, the presence of these activities does not fully explain the Mk-CSA in human serum rich in Mk-CSA. The precise regulation of human blood cell levels and the studies discussed suggest that there is a specific Mk-CSF that responds to in vivo changes in megakaryocyte numbers. Proof of its physiologic role awaits the isolation of a pure factor.  相似文献   

5.
The in vitro cloning technique for detecting megakaryocyte precursor cells was employed to compare stimuli known to influence megakaryocytopoiesis. Preparations of thrombopoietic stimulating factor (TSF) did not directly stimulate the growth of megakaryocyte colonies (CFU-m) but increased the frequency of CFU-m when TSF was added to the cultures with a constant amount of megakaryocyte colony stimulating factor. Platelets or platelet homogenates did not influence the frequency of CFU-m or the size of individual colonies. Analysis of cell surface properties of megakaryocytes obtained either by isolation from bone marrow or from in vitro colonies revealed species differences. The possibility that megakaryocytopoiesis and platelet release are regulated both within the marrow as well as by humoral factors is discussed.  相似文献   

6.
The tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA) was found to act both independently of and synergistically with the mononuclear phagocyte specific colony stimulating factor (CSF-1) to stimulate the formation of macrophage colonies in cultures of mouse bone marrow cells. In contrast, TPA did not synergize with other CSF subclasses that stimulate the formation of eosinophil, eosinophil-neutrophil, neutrophil, neutrophil-macrophage, and macrophage colonies, nor with either of the two factors required for megakaryocyte colony formation, megakaryocyte CSF, and megakaryocyte colony potentiator. In serum-free mouse bone marrow cell cultures TPA retained the ability to independently stimulate macrophage colony formation. However, TPA-stimulated colony formation was suboptimal and delayed in serum-free cultures that could support optimal colony formation in the presence of CSF-1. In addition, TPA did not directly compete with [125I]CSF-1 at 4 degrees C for its specific, high-affinity receptor on mouse peritoneal exudate macrophages. However, a 2-hour preincubation of the cells with TPA at 37 degrees caused almost complete loss of the receptor. Thus, TPA is able to mimic CSF-1 in its effects on CSF-1 responsive cells in some aspects (the spectrum of target cells, the morphology of resulting colonies, and the ability to down-regulate the CSF-1 receptor) but it is not able to mimic CSF-1 in other ways (TPA alone cannot stimulate the full CSF-1 response, TPA does not stimulate the most primitive CSF-1 responsive cells, and TPA does not bind to the CSF-1 receptor).  相似文献   

7.
The in vivo effects of recombinant human interleukin-1 receptor antagonist (rhIL-1Ra) administration on endogenous IL-1 levels in the circulation and conditioned media (CM) from different immunohematopoietic organ/tissues were studied in CBA mice under steady state and postirradiation conditions. In normal mice, constitutive IL-1 levels were demonstrated in the plasma, CM of peritoneal exudate cells and full-thickness skin explants with low or undetectable levels in CM of splenic and bone marrow cell suspensions. In irradiated mice (2 Gy, X rays) on day 3 post exposure a significant increase of IL-1 levels was seen in the circulation and CM of peritoneal exudate cells, with no significantly different levels in postirradiation bone marrow, spleen and skin. After rhIL-1Ra treatment of the animals (2 x 50 microg/mouse, i.p.), significantly elevated IL-1 levels were observed in the skin and CM of peritoneal exudate cells in normal mice, whereas slightly increased levels were detected in CM of splenic cells. The rhIL-1Ra administration in irradiated mice led to decreased IL-1 concentrations in the circulation, and CM of peritoneal exudate cells and skin. The results pointed out the importance of IL-1 secretion and receptor expression in the maintenance of homeostasis in steady state, as well as during recovery after irradiation. Modulatory effects of IL-1Ra on IL-1 production were dependent on basic endogenous IL-1 concentration.  相似文献   

8.
The effect of transforming growth factor-β1 (TGFβ1) on three developmental stages of megakaryocytopoiesis was investigated. Using a murine bone marrow agar culture system, titrated doses of TGFβ1 were added to cultures assaying primitive high proliferative megakaryocyte progenitors, committed megakaryocyte precursors, and nondividing, endoreduplicating megakaryocytes. The growth of high proliferative megakaryocyte colony-forming cells (HPP-CFU-Mk) that require the growth factors interleukins-1, 3 and 6 (IL-1 + IL-3 + IL-6) for colony detection was abrogated by the addition of 1 ng TGFβ1/ml. The sensitivity of committed megakaryocyte progenitors (colony-forming unit-megakaryocyte, CFU-Mk) to TGFβ1 depended on the growth factor combination. TGFβ1 (1 ng/ml) completely inhibited megakaryocyte colony formation from CFU-Mk only in cultures stimulated by low doses of IL-3. TGFβ1 (> 10 ng/ml) could only marginally inhibit megakaryocyte colony forrmation generated in the presence of either high doses of IL-3 or the combination of low dose IL-3 + IL-6. TGFβ1 inhibited both IL-3-dependent and IL-6-dependent megakaryocyte growth but tenfold higher doses of TGFβ1 were required to inhibit growth generated by the combination of IL-3 + IL-6. The data showed that the capacity of TGFβ1 to inhibit distinct differentiation stages of the megakaryocytopoietic lineage depended on the concentration and combination of growth factors involved. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The DNA content of bone marrow megakaryocytes was analyzed in 24 patients with myeloproliferative disorders, 23 patients with secondary thrombocytosis and 15 normal volunteers using 2-color flow cytometry. Compared with normal controls, the majority of patients with secondary thrombocytosis, polycythemia vera and essential thrombocytosis exhibited a relative increase in higher ploidy (greater than 16N) cells. In contrast, patients with chronic myelogenous leukemia exhibited an increase in lower ploidy cells (less than 16N), with a modal DNA content of 8N. Patients with myeloproliferative disorders tended to show a decrease in the 16N megakaryocyte population compared with patients with secondary thrombocytosis. No correlation between ploidy distribution and platelet count was observed.  相似文献   

10.
The first goal of the present studies was to determine if Sl/Sld megakaryocytes have features in common with the macrocytic megakaryocytes that genetically normal mice produce in response to acute platelet depletion. The second was to test the hypothesis that megakaryocyte abnormalities in Sl/Sld mice are due to genetically determined hemopoietic stromal cell abnormalities. Sizes and ploidies of mature Sl/Sld megakaryocytes were measured. Macrocytosis and a shift to higher ploidy values were found compared with normal. Within ploidy groups 16N-64N, Sl/Sld megakaryocytes were larger than normal megakaryocytes of the same ploidy. Transmission electron microscopy revealed that Sl/Sld megakaryocyte nuclei contain more and larger nucleoli, and the chromatin was more dispersed than in normal megakaryocyte nuclei of comparable maturity. Asynchronous megakaryocyte cytoplasmic maturation was found. Sl/Sld macrophages were also ultrastructurally abnormal. Megakaryocytic macrocytosis was reproduced in long-term bone marrow cultures in which the adherent layer was formed by Sl/Sld cells. It was the same if cultures were recharged with Sl/Sld or +/+ hemopoietic cells. Previously reported ambiguities in mixed cell cultures were avoided by recharging the adherent layers with only a million cells. These results were correlated with previously published observations. Sl/Sld megakaryocytes have features in common with megakaryocytes from acutely thrombocytopenic animals. One feature, macrocytosis, appears to be due to abnormal Sl/Sld stromal cells that are reproduced as adherent layer cells in long-term cultures. The responsible stromal cells in Sl/Sld mice may be counterparts of megakaryocytopoietic regulatory cells in the marrow stroma of normal animals.  相似文献   

11.
Summary 1. To investigate the possibility that cholinesterase inhibitors may cause adverse hematopoietic effects, we employed antisense oligodeoxynucleotides selectively inhibiting butyrylcholinesterase gene expression (AS-BCHE). Complementary sense (S) oligonucleotides served as controls.2. In primary bone marrow cell cultures grown with interleukin 3 (IL-3), AS-BCHE but not S-BCHE reduced growth of megakaryocyte colony-forming units (CFU-MK) in a dose-dependent manner at the micromolar range.3. In cultures grown with IL-3, transferrin, and erythropoietin (Epo), cell counts increased up to twofold, yet colony counts (CFU-GEMM) remained unchanged under AS-BCHE treatment.4. Electrophoretic measurements of DNA ladder as an apoptotic index revealed that the above oligonucleotide effects were not due to nonspecific induction of programmed cell death.5. Differential cell counts demonstrated increased myeloidogenesis and reduced levels of early megakaryocytes in CFU-GEMM under AS-BCHE, suggesting requirement of the BuChE protein for megakaryopoiesis.6.In vivo injection of AS-BCHE reduced BCHE mRNA levels in both young and mature megakaryocytes for as long as 20 days, as shown byin situ hybridization.7.Ex vivo growth of primary bone marrow cells revealed a twofold reduction in CFU-MK colonies grown from the AS-BCHE- but not the S-BCHE-injected mice, 15 days posttreatment.8. These findings demonstrate that deficient butyrylcholinesterase expression, and hence interference with this enzyme's activity through treatment with or exposure to cholinesterase inhibitors, may cause hematopoietic differences in treated patients.  相似文献   

12.
The effects of interleukin-11 (IL-11) and thrombopoietin (TPO) on murine megakaryocytopoiesis were studied using a serum-free culture system. Acting alone, both IL-11 and TPO increased the number of acetylcholinesterase (AchE)(+)cells (megakaryocytes), the latter being more potent than the former. TPO, but not IL-11, increased the mean AchE activity per megakaryocyte (AchE activity/megakaryocyte). TPO increased both the number of megakaryocytes with high ploidy, and of those with low ploidy. In contrast, IL-11 increased only the number of megakaryocytes with high ploidy. The effect of TPO on megakaryocyte ploidy was stronger than that of IL-11. Both IL-11 and TPO increased the proportion of large megakaryocytes, but the latter was more potent than the former. While the stimulatory effects of IL-11 and TPO on the number of megakaryocytes were enhanced by IL-3 or stem cell factor (SCF), synergism of IL-11 or TPO with IL-3 or SCF in stimulating AchE activity/megakaryocyte was inconsistent. IL-11 and TPO stimulated the formation of colony-forming units of megakaryocyte in the presence of IL-3, but not alone, with similar maximum colony numbers for both cytokines. Our findings thus demonstrate that IL-11 principally stimulates megakaryocyte maturation rather than the proliferation of megakaryocytes, whereas TPO stimulates both.  相似文献   

13.
The effects of recombinant cytokines on the ploidy of human megakaryocytes derived from megakaryocyte progenitors were studied using serum-free agar cultures. Nonadherent and T cell-depleted marrow cells were cultured for 14 days. Megakaryocyte colonies were identified in situ by the alkaline phosphatase anti-alkaline phosphatase technique, using monoclonal antibody against platelet IIb/IIIa. The ploidy of individual megakaryocytes in colonies was determined by microfluorometry with DAPI (4',6-diamidino-2-phenylindole) staining. Recombinant human interleukin 3 (rhIL-3) and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) supported megakaryocyte colony formation in a dose-dependent manner. However, both rhIL-3 and rhGM-CSF had no definite ability to increase the ploidy values. Recombinant human erythropoietin (rhEpo) or recombinant human macrophage colony-stimulating factor (rhM-CSF) by itself did not stimulate the growth of megakaryocyte progenitors. rhEpo or rhM-CSF, however, stimulated increases in the number, size and ploidy values of megakaryocyte colonies in the presence of rhIL-3 or rhGM-CSF. Recombinant human interleukin 6 (rhIL-6) showed no capacity to generate or enhance megakaryocyte colony formation when added to the culture alone or in combination with rhIL-3. rhIL-6, however, increased the ploidy values in colonies when added with rhIL-3. These results show that rhEpo, rhM-CSF and rhIL-6 affect endomitosis and that two factors are required for megakaryocyte development.  相似文献   

14.
Control of lipoprotein lipase secretion in mouse macrophages   总被引:2,自引:0,他引:2  
The regulation of secretion of lipoprotein lipase (LPL) was studied in in vitro-derived mouse bone marrow macrophages (BMM), peritoneal exudate and resident macrophages and in the macrophage-like tumor cell line J774.1. BMM in cultures initiated with low concentrations of bone marrow cells (LC-BMC cultures) secrete more LPL per cell than BMM in cultures initiated with high concentrations of bone marrow cells (HC-BMC cultures). The suppressed state of LPL secretion in HC-BMC cultures could be alleviated by the addition of a colony-stimulating factor source (L-cell-conditioned medium; L-CM) onto the culture medium or exchanging the medium of HC-BMC cultures with medium from LC-BMC cultures for short periods (4 h). Addition of L-CM increased LPL secretion also in LC-BMC cultures. Addition of L-CM to fresh culture medium had little or no effect, suggesting that, in addition to requirement for L-CM, optimal expression depended also on factors released by the growing cells, probably providing optimal growth conditions. L-CM enhanced LPL secretion by thioglycollate-elicited peritoneal macrophages and had no effect on LPL secretion by resident peritoneal macrophages. Secretion of LPL from adherent J774.1 cells showed a biphasic effect. Secretion increased with cell density up to the point when growth inhibition was observed. In dense cultures in which cell proliferation was almost arrested, LPL secretion was remarkably suppressed (80-90%). Change of medium of dense cultures to fresh medium or medium conditioned by sparse cultures (for the last 4 h of culture) led to enhancement of LPL secretion to levels similar to those optimally expressed by sparse cultures. L-CM did not enhance LPL secretion from J774.1 cells. Dense cultures of both BMM and J774.1 cells did not contain a stable inhibitor of LPL secretion and medium from sparse cultures did not contain an inducer of LPL secretion. The data suggest that proliferating macrophages secrete large amounts of LPL, whereas in nonproliferating, quiescent cells, this activity is much reduced. L-CM enhances LPL secretion in quiescent BMM and peritoneal exudate cells to levels expressed by proliferating cells. Since this effect is already expressed after a 4 h incubation period, it is not dependent on cell cycling but could be one of the early responses to this macrophage mitogen. In J774.1 cells, a change of medium is a sufficient signal for enhancement of LPL secretion in quiescent cells.  相似文献   

15.
Mouse peritoneal exudate cells induced by casein enhanced in vitro antibody production rate per cell of a hybridoma in co-culture. Culture supernatant of the exudate cells also enhanced three-fold the antibody productivity when added to cultures of a hybridoma at 10% (v/v). Hence the enhancement of antibody productivity by the exudate cells seemed to be caused by soluble enhancing factors secreted by the exudate cells. The exudate cells maximally secreted the enhancing factors when harvested from mice on day 4 of the induction period following the injection of casein. A semi-continuous culture of the hybridoma demonstrated the applicability of the culture supernatant to enhance antibody production by producing a two-fold increase over the control for seven days when supplemented with the supernatant at 5%. Significant amounts of interleukin-6 were detected in culture supernatant of the exudate cells. Interleukin-6 obtained from other sources enhanced the antibody productivity two-fold when added to the hybridoma culture at the concentration of 5 unit/ml. Interleukin-6, therefore, is expected to be one of the principal antibody enhancing factors secreted by the exudate cells. Other interleukins examined, that is, interleukin-1 to-5 did not enhance the antibody productivity.  相似文献   

16.
Although umbilical cord blood is increasingly being used in allogeneic marrow transplantation, delayed platelet engraftment is often a concern for cord blood transplant recipients. We evaluated the potential of ex vivo expansion and clonality in CD34+ cells separated from a bone marrow source, and cord blood, in a serum-free Media. The CD34+ cells, selected from bone marrow (BM) and umbilical cord blood (CB), were expanded with hematopoietic growth factors. They were then cultured for burst-forming units of erythrocytes (BFU-E), colony-forming units of granulocytes and monocytes (CFU-GM) and colony-forming units of megakaryocytes (CFU-Mk) at days 0, 4, 7, and 14 under the combination of growth factors, with cell counts. The cytokines included the recombinant human megakaryocyte growth and development (100 ng/ml), interleukin-3 (10 ng/ml), stem cell factor (100 ng/ml), flt-3 ligand (50 ng/ml) and interleukin-11 (200 ng/ml). The CB-selected CD34+ cells showed significantly higher total cell expansion than those from the BM at day 7 (3.0 fold increase than BM), day 14 (2.4 fold), and day 17 (2.6 fold). The colony count of the BFU-E/CFU-E per CD34+ cell at day 0 was 0.14 +/- 0.023 in the CB, which was significantly higher than 0.071 +/- 0.015 in the BM. The CB-selected CD34+ cells produced more BFU-E colonies than the BM on culture days 4, 7, and 14. The BFU-E colonies from the CB cells increased markedly on culture days 4 and 7, with a 4-fold increase at day 14. The colony count of the CFU-Mk per CD34+ cell at day 0 was 0.047 +/- 0.011 in the CB-selected CD34+ cells cultures, which was higher than the 0.026 +/- 0.014 in the BM. The CB-selected CD34+ cells produced more CFU-Mk colonies than the BM on culture days 4, 7 and 14. In conclusion, the ex vivo expansion of the CB cells may be very promising in producing total cellular expansion, CFU-Mk and BFU-E compared with BM, especially at day 7. The ex vivo expansion of the CB may have rationale in making an ex vivo culture for 7 to 14 d.  相似文献   

17.
The effects of an autologous transplanted mammary tumor (RIII-T3) on hemopoiesis in RIII mice are described. Tumor-bearing animals died 30 to 40 days after inoculation and displayed splenomegaly, extreme neutrophilia, and moderately increased monocyte levels in the spleen, peripheral blood, and bone marrow. The precursors of neutrophils and monocytes, granulocyte/macrophage colony-forming cells (GM-CFC) were elevated in the spleen, bone marrow, and peripheral blood. RIII-T3-conditioned medium stimulated bone marrow GM-CFC and caused the myelomonocytic cell line, WEHI-3B, to differentiate in vitro. The conditioned medium did not stimulate erythroid, megakaryocyte, or eosinophil colony formation. When conditioned medium was fractionated, two peaks of activity corresponding to GM-CSF and G-CSF were observed, suggesting that the extreme neutrophilia observed in tumor-bearing animals may result from chronic exposure of the hemopoietic system to these hemopoietic hormones.  相似文献   

18.
Antioxidants are known to influence metabolism and promote cell survival in a number of cell culture systems. However, their effects on the modulation of bone cell differentiationin vitroare not clearly defined. In the present studies we have investigated the effects of β-mercaptoethanol (βME) and ascorbate alone and in combination on human osteoprogenitors derived from bone marrow fibroblasts. In primary marrow cultures, βME stimulated colony formation (2-fold), alkaline phosphatase activity (3.5-fold) and, increased DNA synthesis (8-fold) after 21 days. Cell proliferation was increased significantly by βME during the first 4 days of a 10-day culture period, indicating stimulation of marrow osteoprogenitor proliferation. Ascorbate did not significantly augment the effects of βME in primary cultures or long-term cultures of passaged bone marrow fibroblasts. These findings indicate a potential beneficial role for βME addition for the optimal maintenance of colony formation, cell proliferation and differentiation of marrow osteoprogenitor cells in primary human bone marrow fibroblast cultures.  相似文献   

19.
A high proportion of murine resident peritoneal macrophages bear complement receptors 1 and 3 (CR1, CR3) which bind C3b and iC3b components of complement, respectively. By contrast, macrophages derived from bone marrow, blood, and the elicited peritoneal exudate are predominantly CR1+3. To determine if the microenvironment of the normal peritoneal cavity influences CR3 phenotype, we studied the effects of lavage from the cavity on cultures of primary peritoneal exudate macrophages, and on macrophages derived from progenitors in the bone marrow, blood, and peritoneal exudate. The cell-free peritoneal lavage (CFPL), after 24 hr of culture, induced CR3 on primary and culture-derived populations of peritoneal exudate macrophages but had no effect on the CR3 phenotype of macrophages derived from bone marrow or blood. The CR3-inducing activity in CFPL was abolished by heating at 70 degrees C for 30 min and by trypsin, and was not affected by adsorption with EA(IgM)iC3b indicator cells, demonstrating that it is not soluble CR3. Finally, exudate macrophages exposed to CFPL required at least 24 hr before they expressed CR3; such macrophages regenerated CR3 after the receptors were removed by trypsin. The selective effect of the activity in CFPL for peritoneal exudate macrophages indicates that the local microenvironment of the peritoneal cavity can influence the expression of CR3.  相似文献   

20.
To assess the role of P-selectin and E-selectin in megakaryocytopoiesis, in vitro assays were performed in animal models deficient in both adhesion receptors. There was a significantly greater number of IL-3-responsive megakaryocyte progenitors CFU (CFU-MK) and an increase in immature megakaryoblasts in response to IL-6 in the P-selectin-null mice compared with the wild-type controls. Furthermore, P-selectin-null mice showed a greater number of CFU-MK colonies derived from CD34(+) cells in response to IL-3 or IL-3 plus stem cell factor. A significant shift in baseline ploidy with a reduction in 8N cells and an increase in 32N cells was also observed in the P-selectin-null mice. Secretion of the inhibitory growth factor TGF-beta1 and not TGF-beta2 was significantly lower in the supernatants of cultures containing bone marrow cells from P-selectin-deficient mice as compared with those from the wild-type control bone marrow cells. No differences in the responsiveness of murine CFU-MK, immature megakaryocytes, or 5-fluorouracil-selected stem cells to cytokines were observed in E-selectin-null mice as compared with the control mice. These studies indicate that the absence of P-selectin, and not E-selectin, resulted in an altered adhesion environment with subsequent expansion of megakaryocyte progenitors and immature megakaryoblasts, enhanced secretion of TGF-beta1, and apparent increased responsiveness to inflammatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号