首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Adolescence is a critical period for maturation of neurobiological processes that underlie higher cognitive functions and social and emotional behavior. Recent studies have applied new advances in magnetic resonance imaging to increase understanding of the neurobiological changes that occur during the transition from childhood to early adulthood. Structural imaging data indicate progressive and regressive changes in the relative volumes of specific brain regions, although total brain volume is not significantly altered. The prefrontal cortex matures later than other regions and its development is paralleled by increased abilities in abstract reasoning, attentional shifting, response inhibition and processing speed. Changes in emotional capacity, including improvements in affective modulation and discrimination of emotional cues, are also seen during adolescence. Functional imaging studies using cognitive and affective challenges have shown that frontal cortical networks undergo developmental changes in processing. In summary, brain regions that underlie attention, reward evaluation, affective discrimination, response inhibition and goal-directed behavior undergo structural and functional re-organization throughout late childhood and early adulthood. Evidence from recent imaging studies supports a model by which the frontal cortex adopts an increasingly regulatory role. These neurobiological changes are believed to contribute, in part, to the range in cognitive and affective behavior seen during adolescence.  相似文献   

3.
4.
The cerebral cortex of the echidna is notable for its extensive folding and the positioning of major functional areas towards its caudal extremity. The gyrification of the echidna cortex is comparable in magnitude to prosimians and cortical thickness and neuronal density are similar to that seen in rodents and carnivores. On the other hand, many pyramidal neurons in the cerebral cortex of the echidna are atypical with inverted somata and short or branching apical dendrites. All other broad classes of neurons noted in therian cortex are also present in the echidna, suggesting that the major classes of cortical neurons evolved prior to the divergence of proto- and eutherian lineages. Dendritic spine density on dendrites of echidna pyramidal neurons in somatosensory cortex and apical dendrites of motor cortex pyramidal neurons is lower than that found in eutheria. On the other hand, synaptic morphology, density and distribution in somatosensory cortex are similar to that in eutheria. In summary, although the echidna cerebral cortex displays some structural features, which may limit its functional capacities (e.g. lower spine density on pyramidal neurons), in most structural parameters (e.g. gyrification, cortical area and thickness, neuronal density and types, synaptic morphology and density), it is comparable to eutheria.  相似文献   

5.
Zhang Y  Wu Y  Zhu M  Wang C  Wang J  Zhang Y  Yu C  Jiang T 《PloS one》2011,6(12):e29673
Mental retardation is a developmental disorder associated with impaired cognitive functioning and deficits in adaptive behaviors. Many studies have addressed white matter abnormalities in patients with mental retardation, while the changes of the cerebral cortex have been studied to a lesser extent. Quantitative analysis of cortical integrity using cortical thickness measurement may provide new insights into the gray matter pathology. In this study, cortical thickness was compared between 13 patients with mental retardation and 26 demographically matched healthy controls. We found that patients with mental retardation had significantly reduced cortical thickness in multiple brain regions compared with healthy controls. These regions include the bilateral lingual gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral temporal pole, the left inferior temporal gyrus, the right lateral orbitofrontal cortex and the right precentral gyrus. The observed cortical thickness reductions might be the anatomical substrates for the impaired cognitive functioning and deficits in adaptive behaviors in patients with mental retardation. Cortical thickness measurement might provide a sensitive prospective surrogate marker for clinical trials of neuroprotective medications.  相似文献   

6.
Size and folding of the cerebral cortex increased massively during mammalian evolution leading to the current diversity of brain morphologies. Various subtypes of neural stem and progenitor cells have been proposed to contribute differently in regulating thickness or folding of the cerebral cortex during development, but their specific roles have not been demonstrated. We report that the controlled expansion of unipotent basal progenitors in mouse embryos led to megalencephaly, with increased surface area of the cerebral cortex, but not to cortical folding. In contrast, expansion of multipotent basal progenitors in the naturally gyrencephalic ferret was sufficient to drive the formation of additional folds and fissures. In both models, changes occurred while preserving a structurally normal, six‐layered cortex. Our results are the first experimental demonstration of specific and distinct roles for basal progenitor subtypes in regulating cerebral cortex size and folding during development underlying the superior intellectual capability acquired by higher mammals during evolution.  相似文献   

7.
Folding of the cerebral cortex is a fundamental milestone of mammalian brain evolution associated with dramatic increases in size and complexity. Cortex folding takes place during embryonic and perinatal development and is important to optimize the functional organization and wiring of the brain, while allowing fitting a large cortex in a limited cranial volume. Cortex growth and folding are the result of complex cellular and mechanical processes that involve neural stem progenitor cells and their lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. Here, we provide an updated overview of the most significant and recent advances in our understanding of developmental mechanisms regulating cortical gyrification.  相似文献   

8.
Cerebral cortical size and organization are critical features of neurodevelopment and human evolution, for which genetic investigation in model organisms can provide insight into developmental mechanisms and the causes of cerebral malformations. However, some abnormalities in cerebral cortical proliferation and folding are challenging to study in laboratory mice due to the absence of gyri and sulci in rodents. We report an autosomal recessive allele in domestic cats associated with impaired cerebral cortical expansion and folding, giving rise to a smooth, lissencephalic brain, and that appears to be caused by homozygosity for a frameshift in PEA15 (phosphoprotein expressed in astrocytes-15). Notably, previous studies of a Pea15 targeted mutation in mice did not reveal structural brain abnormalities. Affected cats, however, present with a non-progressive hypermetric gait and tremors, develop dissociative behavioral defects and aggression with age, and exhibit profound malformation of the cerebrum, with a 45% average decrease in overall brain weight, and reduction or absence of the ectosylvian, sylvian and anterior cingulate gyrus. Histologically, the cerebral cortical layers are disorganized, there is substantial loss of white matter in tracts such as the corona radiata and internal capsule, but the cerebellum is relatively spared. RNA-seq and immunohistochemical analysis reveal astrocytosis. Fibroblasts cultured from affected cats exhibit increased TNFα-mediated apoptosis, and increased FGFb-induced proliferation, consistent with previous studies implicating PEA15 as an intracellular adapter protein, and suggesting an underlying pathophysiology in which increased death of neurons accompanied by increased proliferation of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. Taken together, our work points to a new role for PEA15 in development of a complex cerebral cortex that is only apparent in gyrencephalic species.

SummaryGyrification is the neurodevelopmental process in certain mammalian species during which the cerebral cortex expands and folds resulting in the classic wrinkled appearance of the brain. Abnormalities in this process underlie many congenital malformations of the brain. However, unlike many other human malformations, genetic insight into gyrification is not possible in laboratory mice because rodents have a lissencephalic or smooth cerebral cortex. We identified a pathogenic variant in domestic cats that likely causes failure of the cerebral cortex to expand and fold properly, and discovered that the pathogenic variant impairs production of a protein, PEA15 (phosphoprotein expressed in astrocytes-15), involved in intracellular signaling. Affected cats have profound abnormalities in brain development, with minimal changes in their superficial behavior and neurologic function. Additional studies of tissue and cultured cells from affected animals suggest a pathophysiologic mechanism in which increased death of neurons accompanied by increased cell division of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. These results provide new insight into a developmental process that is unique to animals with gyrencephalic brains.  相似文献   

9.
Pathological and imaging data indicate that amyotrophic lateral sclerosis (ALS) is a multisystem disease involving several cerebral cortical areas. Advanced quantitative magnetic resonance imaging (MRI) techniques enable to explore in vivo the volume and microstructure of the cerebral cortex in ALS. We studied with a combined voxel-based morphometry (VBM) and magnetization transfer (MT) imaging approach the capability of MRI to identify the cortical areas affected by neurodegeneration in ALS patients. Eighteen ALS patients and 18 age-matched healthy controls were examined on a 1.5T scanner using a high-resolution 3D T1 weighted spoiled gradient recalled sequence with and without MT saturation pulse. A voxel-based analysis (VBA) was adopted in order to automatically compute the regional atrophy and MT ratio (MTr) changes of the entire cerebral cortex. By using a multimodal image analysis MTr was adjusted for local gray matter (GM) atrophy to investigate if MTr changes can be independent of atrophy of the cerebral cortex. VBA revealed several clusters of combined GM atrophy and MTr decrease in motor-related areas and extra-motor frontotemporal cortex. The multimodal image analysis identified areas of isolated MTr decrease in premotor and extra-motor frontotemporal areas. VBM and MTr are capable to detect the distribution of neurodegenerative alterations in the cortical GM of ALS patients, supporting the hypothesis of a multi-systemic involvement in ALS. MT imaging changes exist beyond volume loss in frontotemporal cortices.  相似文献   

10.

Background

Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM) and white matter (WM) disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.

Methods

We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.

Results

We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.

Conclusions

Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.  相似文献   

11.
Major depressive disorder (MDD) is accompanied by atypical brain structure. This study first presents the alterations in the cortical surface of patients with MDD using multidimensional structural patterns that reflect different neurodevelopment. Sixteen first-episode, untreated patients with MDD and 16 matched healthy controls underwent a magnetic resonance imaging (MRI) scan. The cortical maps of thickness, surface area, and gyrification were examined using the surface-based morphometry (SBM) approach. Increase of cortical thickness was observed in the right posterior cingulate region and the parietal cortex involving the bilateral inferior, left superior parietal and right paracentral regions, while decreased thickness was noted in the parietal cortex including bilateral pars opercularis and left precentral region, as well as the left rostral-middle frontal regions in patients with MDD. Likewise, increased or decreased surface area was found in five sub-regions of the cingulate gyrus, parietal and frontal cortices (e.g., bilateral inferior parietal and superior frontal regions). In addition, MDD patients exhibited a significant hypergyrification in the right precentral and supramarginal region. This integrated structural assessment of cortical surface suggests that MDD patients have cortical alterations of the frontal, parietal and cingulate regions, indicating a vulnerability to MDD during earlier neurodevelopmental process.  相似文献   

12.
Puberty reflects a period of hormonal changes, physical maturation and structural brain reorganization. However, little attention has been paid to what extent sex steroids and pituitary hormones are associated with the refinement of brain maturation across adolescent development. Here we used high-resolution structural MRI scans from 215 typically developing individuals between ages 8–25, to examine the association between cortical thickness, surface area and (sub)cortical brain volumes with luteinizing hormone, testosterone and estradiol, and pubertal stage based on self-reports. Our results indicate sex-specific differences in testosterone related influences on gray matter volumes of the anterior cingulate cortex after controlling for age effects. No significant associations between subcortical structures and sex hormones were found. Pubertal stage was not a stronger predictor than chronological age for brain anatomical differences. Our findings indicate that sex steroids are associated with cerebral gray matter morphology in a sex specific manner. These hormonal and morphological differences may explain in part differences in brain development between boys and girls.  相似文献   

13.
Folding of the cerebral cortex is a critical phase of brain development in higher mammals but the biomechanics of folding remain incompletely understood. During folding, the growth of the cortical surface is heterogeneous and anisotropic. We developed and applied a new technique to measure spatial and directional variations in surface growth from longitudinal magnetic resonance imaging (MRI) studies of a single animal or human subject. MRI provides high resolution 3D image volumes of the brain at different stages of development. Surface representations of the cerebral cortex are obtained by segmentation of these volumes. Estimation of local surface growth between two times requires establishment of a point-to-point correspondence ("registration") between surfaces measured at those times. Here we present a novel approach for the registration of two surfaces in which an energy function is minimized by solving a partial differential equation on a spherical surface. The energy function includes a strain-energy term due to distortion and an "error energy" term due to mismatch between surface features. This algorithm, implemented with the finite element method, brings surface features into approximate alignment while minimizing deformation in regions without explicit matching criteria. The method was validated by application to three simulated test cases and applied to characterize growth of the ferret cortex during folding. Cortical surfaces were created from MRI data acquired in vivo at 14 days, 21 days, and 28 days of life. Deformation gradient and Lagrangian strain tensors describe the kinematics of growth over this interval. These quantitative results illuminate the spatial, temporal, and directional patterns of growth during cortical folding.  相似文献   

14.
Structural imaging research offers excellent translational benefits when non-human primate (NHP) models are employed. In this paper, we will discuss the development of anatomical MR imaging protocols for two important applications of structural imaging in NHPs: studies of genetic variability in brain morphology and longitudinal imaging of fetal brain maturation trends. In contrast with imaging studies of adult humans, structural imaging in the NHPs is challenging due to a comparatively small brain size (2- to 200-fold smaller volume, depending on the species). This difference in size is further accentuated in NHP studies of brain development in which fetal brain volumes are 10–50% of their adult size. The sizes of cortical gyri and sulci scale allometrically with brain size. Thus, achieving spatial sampling that is comparable to that of high-quality human studies (~1.0 mm3) requires a brain-size-adjusted reduction in the sampling volumes of from 500-to-150 μm3. Imaging at this spatial resolution while maintaining sufficient contrast and signal to noise ratio necessitates the development of specialized MRI protocols. Here we discuss our strategy to optimize the protocol parameters for two commonly available structural imaging sequences: MPRAGE and TrueFisp. In addition, computational tools developed for the analysis of human structural images were applied to the NHP studies. These included removal of non-brain tissues, correction for RF inhomogeneity, spatial normalization, building of optimized target brain and analysis of cerebral gyrification and individual cortical variability. Finally, recent findings in the genetics of cerebral gyrification and tracking of maturation trends in the fetal, newborn and adult brain are described.  相似文献   

15.
Liu T  Lipnicki DM  Zhu W  Tao D  Zhang C  Cui Y  Jin JS  Sachdev PS  Wen W 《PloS one》2012,7(2):e31083
Alzheimer's disease (AD) is characterized by an insidious onset of progressive cerebral atrophy and cognitive decline. Previous research suggests that cortical folding and sulcal width are associated with cognitive function in elderly individuals, and the aim of the present study was to investigate these morphological measures in patients with AD. The sample contained 161 participants, comprising 80 normal controls, 57 patients with very mild AD, and 24 patients with mild AD. From 3D T1-weighted brain scans, automated methods were used to calculate an index of global cortex gyrification and the width of five individual sulci: superior frontal, intra-parietal, superior temporal, central, and Sylvian fissure. We found that global cortex gyrification decreased with increasing severity of AD, and that the width of all individual sulci investigated other than the intra-parietal sulcus was greater in patients with mild AD than in controls. We also found that cognitive functioning, as assessed by Mini-Mental State Examination (MMSE) scores, decreased as global cortex gyrification decreased. MMSE scores also decreased in association with a widening of all individual sulci investigated other than the intra-parietal sulcus. The results suggest that abnormalities of global cortex gyrification and regional sulcal span are characteristic of patients with even very mild AD, and could thus facilitate the early diagnosis of this condition.  相似文献   

16.
Growing evidence suggests that aerobic fitness benefits the brain and cognition during childhood. The present study is the first to explore cortical brain structure of higher fit and lower fit 9- and 10-year-old children, and how aerobic fitness and cortical thickness relate to academic achievement. We demonstrate that higher fit children (>70th percentile VO2max) showed decreased gray matter thickness in superior frontal cortex, superior temporal areas, and lateral occipital cortex, coupled with better mathematics achievement, compared to lower fit children (<30th percentile VO2max). Furthermore, cortical gray matter thinning in anterior and superior frontal areas was associated with superior arithmetic performance. Together, these data add to our knowledge of the biological markers of school achievement, particularly mathematics achievement, and raise the possibility that individual differences in aerobic fitness play an important role in cortical gray matter thinning during brain maturation. The establishment of predictors of academic performance is key to helping educators focus on interventions to maximize learning and success across the lifespan.  相似文献   

17.
Attention-Deficit/Hyperactivity Disorder (ADHD) and intelligence (IQ) are both heritable phenotypes. Overlapping genetic effects have been suggested to influence both, with neuroimaging work suggesting similar overlap in terms of morphometric properties of the brain. Together, this evidence suggests that the brain changes characteristic of ADHD may vary as a function of IQ. This study investigated this hypothesis in a sample of 108 children with ADHD and 106 typically developing controls, who participated in a cross-sectional anatomical MRI study. A subgroup of 64 children also participated in a diffusion tensor imaging scan. Brain volumes, local cortical thickness and average cerebral white matter microstructure were analyzed in relation to diagnostic group and IQ. Dimensional analyses investigated possible group differences in the relationship between anatomical measures and IQ. Second, the groups were split into above and below median IQ subgroups to investigate possible differences in the trajectories of cortical development. Dimensionally, cerebral gray matter volume and cerebral white matter microstructure were positively associated with IQ for controls, but not for ADHD. In the analyses of the below and above median IQ subgroups, we found no differences from controls in cerebral gray matter volume in ADHD with below-median IQ, but a delay of cortical development in a number of regions, including prefrontal areas. Conversely, in ADHD with above-median IQ, there were significant reductions from controls in cerebral gray matter volume, but no local differences in the trajectories of cortical development.In conclusion, the basic relationship between IQ and neuroanatomy appears to be altered in ADHD. Our results suggest that there may be multiple brain phenotypes associated with ADHD, where ADHD combined with above median IQ is characterized by small, more global reductions in brain volume that are stable over development, whereas ADHD with below median IQ is associated more with a delay of cortical development.  相似文献   

18.
Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.  相似文献   

19.
Although neonatal arterial ischemic stroke is now well‐studied, its complex consequences on long‐term cortical brain development has not yet been solved. In order to understand the brain development after focal early brain lesion, brain morphometry needs to be evaluated using structural parameters. In this work, our aim was to study and analyze the changes in morphometry of ipsi‐ and contralesional hemispheres in seven‐year‐old children following neonatal stroke. Therefore, we used surface‐based morphometry in order to examine the cortical thickness, surface area, cortical volume, and local gyrification index in two groups of children that suffered from neonatal stroke in the left (n = 19) and right hemispheres (n = 15) and a group of healthy controls (n = 30). Reduced cortical thickness, surface area, and cortical volumes were observed in the ipsilesional hemispheres for both groups in comparison with controls. For the group with left‐sided lesions, higher gyrification of the contralesional hemisphere was observed primarily in the occipital region along with higher surface area and cortical volume. As for the group with right‐sided lesions, higher gyrification was detected in two separate clusters also in the occipital lobe of the contralesional hemisphere, without a significant change in cortical thickness, surface area, or cortical volume. This is the first time that alterations of structural parameters are detected in the “healthy” hemisphere after unilateral neonatal stroke indicative of a compensatory phenomenon. Moreover, findings presented in this work suggest that lesion lateralization might have an influence on brain development and maturation.  相似文献   

20.
Cortical folding, or convolution of the brain, is a vital process in mammals that causes the brain to have a wrinkled appearance. The existence of different types of prenatal solid tumors may alter this complex phenomenon and cause severe brain disorders. Here we interpret the effects of a growing solid tumor on the cortical folding in the fetal brain by virtue of theoretical analyses and computational modeling. The developing fetal brain is modeled as a simple, double-layered, and soft structure with an outer cortex and an inner core, in combination with a circular tumor model imbedded in the structure to investigate the developmental mechanism of cortical convolution. Analytical approaches offer introductory insight into the deformation field and stress distribution of a developing brain. After the onset of instability, analytical approaches fail to capture complex secondary evolution patterns, therefore a series of non-linear finite element simulations are carried out to study the crease formation and the influence from a growing solid tumor inside the structure. Parametric studies show the dependency of the cortical folding pattern on the size, location, and growth speed of a solid tumor in fetal brain. It is noteworthy to mention that there is a critical distance from the cortex/core interface where the growing tumor shows its pronounced effect on the cortical convolution, and that a growing tumor decreases the gyrification index of cortical convolution while its stiffness does not have a profound effect on the gyrification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号