首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Amyloid fibril deposition of human islet amyloid polypeptide (hIAPP) in pancreatic islet cells is implicated in the pathogenesis of type II diabetes. A growing number of studies suggest that small peptide aggregates are cytotoxic via their interaction with the plasma membrane, which leads to membrane permeabilization or disruption. A recent study using imaging total internal reflection-fluorescence correlation spectroscopy (ITIR-FCS) showed that monomeric hIAPP induced the formation of cellular plasma membrane microdomains containing dense lipids, in addition to the modulation of membrane fluidity. However, the spatial organization of microdomains and their temporal evolution were only partially characterized due to limitations in the conventional analysis and interpretation of imaging FCS datasets. Here, we apply a previously developed Bayesian analysis procedure to ITIR-FCS data to resolve hIAPP-induced microdomain spatial organization and temporal dynamics. Our analysis enables the visualization of the temporal evolution of multiple diffusing species in the spatially heterogeneous cell membrane, lending support to the carpet model for the association mode of hIAPP aggregates with the plasma membrane. The presented Bayesian analysis procedure provides an automated and general approach to unbiased model-based interpretation of imaging FCS data, with broad applicability to resolving the heterogeneous spatial-temporal organization of biological membrane systems.  相似文献   

2.
《Biophysical journal》2020,118(10):2434-2447
Diffusion obstacles in membranes have not been directly visualized because of fast membrane dynamics and the occurrence of subresolution molecular complexes. To understand the obstacle characteristics, mobility-based methods are often used as an indirect way of assessing the membrane structure. Molecular movement in biological plasma membranes is often characterized by anomalous diffusion, but the exact underlying mechanisms are still elusive. Imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is a well-established mobility-based method that provides spatially resolved diffusion coefficient maps and is combined with FCS diffusion law analysis to examine subresolution membrane organization. In recent years, although FCS diffusion law analysis has been instrumental in providing new insights into the membrane structure below the optical diffraction limit, there are certain exceptions and anomalies that require further clarification. To this end, we correlate the membrane structural features imaged by atomic force microscopy (AFM) with the dynamics measured using ITIR-FCS. We perform ITIR-FCS measurements on supported lipid bilayers (SLBs) of various lipid compositions to characterize the anomalous diffusion of lipid molecules in distinct obstacle configurations, along with the high-resolution imaging of the membrane structures with AFM. Furthermore, we validate our experimental results by performing simulations on image grids with experimentally determined obstacle configurations. This study demonstrates that FCS diffusion law analysis is a powerful tool to determine membrane heterogeneities implied from dynamics measurements. Our results corroborate the commonly accepted interpretations of imaging FCS diffusion law analysis, and we show that exceptions happen when domains reach the percolation threshold in a biphasic membrane and a network of domains behaves rather like a meshwork, resulting in hop diffusion.  相似文献   

3.
Cell membrane organization is dynamic and is assumed to have different characteristic length scales. These length scales, which are influenced by lipid and protein composition as well as by the cytoskeleton, can range from below the optical resolution limit (as with rafts or microdomains) to far above the resolution limit (as with capping phenomena or the formation of lipid “platforms”). The measurement of these membrane features poses a significant problem because membrane dynamics are on the millisecond timescale and are thus beyond the time resolution of conventional imaging approaches. Fluorescence correlation spectroscopy (FCS), a widely used spectroscopic technique to measure membrane dynamics, has the required time resolution but lacks imaging capabilities. A promising solution is the recently introduced method known as imaging total internal reflection (ITIR)-FCS, which can probe diffusion phenomena in lipid membranes with good temporal and spatial resolution. In this work, we extend ITIR-FCS to perform ITIR fluorescence cross-correlation spectroscopy (ITIR-FCCS) between pixel areas of arbitrary shape and derive a generalized expression that is applicable to active transport and diffusion. ITIR-FCCS is applied to model systems exhibiting diffusion, active transport, or a combination of the two. To demonstrate its applicability to live cells, we observe the diffusion of a marker, the sphingolipid-binding domain (SBD) derived from the amyloid peptide Aβ, on live neuroblastoma cells. We investigate the organization and dynamics of SBD-bound lipid microdomains under the conditions of cholesterol removal and cytoskeleton disruption.  相似文献   

4.
To probe the complexity of the cell membrane organization and dynamics, it is important to obtain simple physical observables from experiments on live cells. Here we show that fluorescence correlation spectroscopy (FCS) measurements at different spatial scales enable distinguishing between different submicron confinement models. By plotting the diffusion time versus the transverse area of the confocal volume, we introduce the so-called FCS diffusion law, which is the key concept throughout this article. First, we report experimental FCS diffusion laws for two membrane constituents, which are respectively a putative raft marker and a cytoskeleton-hindered transmembrane protein. We find that these two constituents exhibit very distinct behaviors. To understand these results, we propose different models, which account for the diffusion of molecules either in a membrane comprising isolated microdomains or in a meshwork. By simulating FCS experiments for these two types of organization, we obtain FCS diffusion laws in agreement with our experimental observations. We also demonstrate that simple observables derived from these FCS diffusion laws are strongly related to confinement parameters such as the partition of molecules in microdomains and the average confinement time of molecules in a microdomain or a single mesh of a meshwork.  相似文献   

5.
The organization of the plasma membrane is regulated by the dynamic equilibrium between the liquid ordered (Lo) and liquid disordered (Ld) phases. The abundance of the Lo phase is assumed to be a consequence of the interaction between cholesterol and the other lipids, which are otherwise in either the Ld or gel (So) phase. The characteristic lipid packing in these phases results in significant differences in their respective lateral dynamics. In this study, imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is applied to monitor the diffusion within supported lipid bilayers (SLBs) as functions of temperature and composition. We show that the temperature dependence of membrane lateral diffusion, which is parameterized by the Arrhenius activation energy (EArr), can resolve the sub-resolution phase behavior of lipid mixtures. The FCS diffusion law, a novel membrane heterogeneity ruler implemented in ITIR-FCS, is applied to show that the domains in the So–Ld phase are static and large while they are small and dynamic in the Lo–Ld phase. Diffusion measurements and the subsequent FCS diffusion law analyses at different temperatures show that the modulation in membrane dynamics at high temperature (313 K) is a cumulative effect of domain melting and rigidity relaxation. Finally, we extend these studies to the plasma membranes of commonly used neuroblastoma, HeLa and fibroblast cells. The temperature dependence of membrane dynamics for neuroblastoma cells is significantly different from that of HeLa or fibroblast cells as the different cell types exhibit a high level of compositional heterogeneity.  相似文献   

6.
Human islet amyloid polypeptides (hIAPP) aggregate into amyloid deposits in the pancreatic islets of Langerhans, contributing to the loss of β-cells of patients with type 2 diabetes. Despite extensive studies of membrane disruption associated with hIAPP aggregates, the molecular details regarding the complex interplay between hIAPP aggregates and raft-containing membranes are still very limited. Using all-atom molecular dynamics simulations, we investigate the impact of hIAPP aggregate insertion on lipid segregation. We have found that the domain separation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is enhanced upon hIAPP membrane permeabilization in the absence of cholesterol, while within our simulation timescale, we cannot provide definitive evidence regarding the impact of hIAPP insertion on domain segregation in the ternary mixture (DOPC/DPPC/cholesterol). When the lipid domains are perturbed, their restoration occurs rapidly and spontaneously in the presence of hIAPP aggregates. hIAPP insertion affects membrane thickness in its immediate surroundings. On average, hIAPP causes the fluidity of lipids to increase and even cholesterol shows enhanced diffusivity. The acyl chain packing of the lipids near hIAPP is disrupted as compared to that further away from it. Cholesterol not only modulates membrane mobility and ordering but also hIAPP aggregates' structure and relative orientation to the membrane. Our investigations on the interaction between hIAPP aggregates and raft-containing membranes could lead to a better understanding of the mechanisms of amyloid cytotoxicity.  相似文献   

7.
《Molecular membrane biology》2013,30(4-6):178-189
Abstract

Cholesterol- and glycosphingolipid-enriched membrane lipid microdomains, frequently called lipid rafts, are thought to play an important role in the spatial and temporal organization of immunological synapses. Higher ordering of lipid acyl chains was suggested for these entities and imaging of membrane order in living cells during activation can therefore help to understand the mechanisms responsible for the supramolecular organization of molecules involved in the activation of T cells. Here, we employ the phase-sensitive membrane dye di-4-ANEPPDHQ together with a variety of spectrally-resolved microscopy techniques, including 2-channel ratiometric TIRF microscopy and fluorescence lifetime imaging, to characterize membrane order at the T cell immunological synapse at high spatial and temporal resolution in live cells at physiological temperature. We find that higher membrane order resides at the immunological synapse periphery where proximal signalling through the immunoreceptors and accessory proteins in microclusters has previously been shown to take place. The observed spatial patterning of membrane order in the immunological synapse depends on active receptor signalling.  相似文献   

8.
Human synthetic islet amyloid polypeptide (hIAPP) is rapidly converted to beta-sheet conformation and fibrils in aqueous media. Optimal solubility conditions for hIAPP were determined by circular dichroism spectroscopy and transmission electron microscopy. hIAPP in trifluoroethanol or hexafluoro-2-isopropanol (HFIP) diluted in water or phosphate buffer (PB) exhibited random structure which was converted to beta-sheet and fibrils with time. hIAPP, solubilised in HFIP, filtered and lyophilised remained in stable random structure for up to 7 days in water; in PB, insoluble aggregates precipitated from which protofilaments and fibrils formed with time. This suggests that amorphous aggregates of hIAPP could initiate islet amyloidosis in vivo.  相似文献   

9.
The dynamics of biomolecules in the plasma membrane is of fundamental importance to understanding cellular processes. Cellular signaling often starts with extracellular ligand binding to a membrane receptor, which then transduces an intracellular signal. Ligand binding and receptor-complex activation often involve a complex rearrangement of proteins in the membrane, which results in changes in diffusion properties. Two widely used methods to characterize biomolecular diffusion are single-particle tracking (SPT) and imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS). Here, we compare the results of recovered diffusion coefficients and mean-square displacements of the two methods by simulations of free, domain-confined, or meshwork diffusion. We introduce, to our knowledge, a new method for the determination of confinement radii from ITIR-FCS data. We further establish and demonstrate simultaneous SPT/ITIR-FCS for direct comparison within living cells. Finally, we compare the results obtained by SPT and ITIR-FCS for the receptor tyrosine kinase MET. Our results show that SPT and ITIR-FCS yield complementary information on diffusion properties of biomolecules in cell membranes.  相似文献   

10.
Interactions of human islet amyloid polypeptide (hIAPP or amylin) with the cell membrane are correlated with the dysfunction and death of pancreatic islet β-cells in type II diabetes. Formation of receptor-independent channels by hIAPP in the membrane is regarded as one of the membrane-damaging mechanisms that induce ion homeostasis and toxicity in islet β-cells. Here, we investigate the dynamic structure, ion conductivity, and membrane interactions of hIAPP channels in the DOPC bilayer using molecular modeling and molecular dynamics simulations. We use the NMR-derived β-strand-turn-β-strand motif as a building block to computationally construct a series of annular-like hIAPP structures with different sizes and topologies. In the simulated lipid environments, the channels lose their initial continuous β-sheet network and break into oligomeric subunits, which are still loosely associated to form heterogeneous channel conformations. The channels' shapes, morphologies and dimensions are compatible with the doughnut-like images obtained by atomic force microscopy, and with those of modeled channels for Aβ, the β(2)-microglobulin-derived K3 peptides, and the β-hairpin-based channels of antimicrobial peptide PG-1. Further, all channels induce directional permeability of multiple ions across the bilayers from the lower to the upper leaflet. This similarity suggests that loosely-associated β-structure motifs can be a general feature of toxic, unregulated channels. In the absence of experimental high-resolution atomic structures of hIAPP channels in the membrane, this study represents a first attempt to delineate some of the main structural features of the hIAPP channels, for a better understanding of the origin of amyloid toxicity and the development of pharmaceutical agents.  相似文献   

11.
12.
Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra.  相似文献   

13.
The pathology of type 2 diabetes mellitus is associated with the aggregation of human islet amyloid polypeptide (hIAPP) and aggregation-mediated membrane disruption. The interactions of hIAPP aggregates with lipid membrane, as well as the effects of pH and lipid composition at the atomic level, remain elusive. Herein, using molecular dynamics simulations, we investigate the interactions of hIAPP protofibrillar oligomers with lipids, and the membrane perturbation that they induce, when they are partially inserted in an anionic dipalmitoyl-phosphatidylglycerol (DPPG) membrane or a mixed dipalmitoyl-phosphatidylcholine (DPPC)/DPPG (7:3) lipid bilayer under acidic/neutral pH conditions. We observed that the tilt angles and insertion depths of the hIAPP protofibril are strongly correlated with the pH and lipid composition. At neutral pH, the tilt angle and insertion depth of hIAPP protofibrils at a DPPG bilayer reach ~52° and ~1.62 nm with respect to the membrane surface, while they become ~77° and ~1.75 nm at a mixed DPPC/DPPG membrane. The calculated tilt angle of hIAPP at DPPG membrane is consistent with a recent chiral sum frequency generation spectroscopic study. The acidic pH induces a smaller tilt angle of ~40° and a shallower insertion depth (~1.24 nm) of hIAPP at the DPPG membrane surface, mainly due to protonation of His18 near the turn region. These differences mainly result from a combination of distinct electrostatic, van der Waals, hydrogen bonding and salt-bridge interactions between hIAPP and lipid bilayers. The hIAPP-membrane interaction energy analysis reveals that besides charged residues K1, R11 and H18, aromatic residues Phe15 and Phe23 also exhibit strong interactions with lipid bilayers, revealing the crucial role of aromatic residues in stabilizing the membrane-bound hIAPP protofibrils. hIAPP-membrane interactions disturb the lipid ordering and the local bilayer thickness around the peptides. Our results provide atomic-level information of membrane interaction of hIAPP protofibrils, revealing pH-dependent and membrane-modulated hIAPP aggregation at the early stage.  相似文献   

14.
Diffusion in cellular membranes is regulated by processes that occur over a range of spatial and temporal scales. These processes include membrane fluidity, interprotein and interlipid interactions, interactions with membrane microdomains, interactions with the underlying cytoskeleton, and cellular processes that result in net membrane movement. The complex, non-Brownian diffusion that results from these processes has been difficult to characterize, and moreover, the impact of factors such as membrane recycling on membrane diffusion remains largely unexplored. We have used a careful statistical analysis of single-particle tracking data of the single-pass plasma membrane protein CD93 to show that the diffusion of this protein is well described by a continuous-time random walk in parallel with an aging process mediated by membrane corrals. The overall result is an evolution in the diffusion of CD93: proteins initially diffuse freely on the cell surface but over time become increasingly trapped within diffusion-limiting membrane corrals. Stable populations of freely diffusing and corralled CD93 are maintained by an endocytic/exocytic process in which corralled CD93 is selectively endocytosed, whereas freely diffusing CD93 is replenished by exocytosis of newly synthesized and recycled CD93. This trafficking not only maintained CD93 diffusivity but also maintained the heterogeneous distribution of CD93 in the plasma membrane. These results provide insight into the nature of the biological and biophysical processes that can lead to significantly non-Brownian diffusion of membrane proteins and demonstrate that ongoing membrane recycling is critical to maintaining steady-state diffusion and distribution of proteins in the plasma membrane.  相似文献   

15.
Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra.  相似文献   

16.
The plasma membrane of various mammalian cell types is heterogeneous in structure and may contain microdomains, which can impose constraints on the lateral diffusion of its constituents. Fluorescence correlation spectroscopy (FCS) can be used to investigate the dynamic properties of the plasma membrane of living cells. Very recently, Wawrezinieck et al. (Wawrezinieck, L., H. Rigneault, D. Marguet, and P. F. Lenne. 2005. Biophys. J. 89:4029-4042) described a method to probe the nature of the lateral microheterogeneities of the membrane by varying the beam size in the FCS instrument. The dependence of the width of the autocorrelation function at half-maximum, i.e., the diffusion time, on the transverse area of the confocal volume gives information on the nature of the imposed confinement. We describe an alternative approach that yields essentially the same information, and can readily be applied on commercial FCS instruments by measuring the diffusion time and the particle number at various relative positions of the cell membrane with respect to the waist of the laser beam, i.e., by performing a Z-scan.  相似文献   

17.
The amyloid deposits of human islet amyloid polypeptide (hIAPP) are found in type 2 diabetes patients. hIAPP monomer is intrinsically disordered in solution, whereas it can form amyloid fibrils both in vivo and in vitro. Extensive evidence suggests that hIAPP causes the disruption of cellular membrane, and further induces cytotoxicity and the death of islet β-cells in pancreas. The presence of membrane also accelerates the hIAPP fibril formation. hIAPP oligomers and protofibrils in the early stage of aggregation were reported to be the most cytotoxic, disrupting the membrane integrity and giving rise to the pathological process. The detailed molecular mechanisms of hIAPP-membrane interactions and membrane disruption are complex and remain mostly unknown. Here in this review, we focus on recent computational studies that investigated the interactions of full length and fragmentary hIAPP monomers, oligomers and protofibrils with anionic, zwitterionic and mixed anionic-zwitterionic lipid bilayers. We mainly discuss the binding orientation of monomers at membrane surface, the conformational ensemble and the oligomerization of hIAPP inside membranes, the effect of lipid composition on hIAPP oligomers/protofibrils-membrane interactions, and the hIAPP-induced membrane perturbation. This review provides mechanistic insights into the interactions between hIAPP and lipid bilayers with different lipid composition at an atomistic level, which is helpful to understand the hIAPP cytotoxicity mediated by membrane. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

18.
Establishment of polarized cell morphology is a critical factor for migration and requires precise spatial and temporal activation of the Rho GTPases. Here, we describe a novel role of the actin-binding ezrin/radixin/moesin (ERM)-protein ezrin to be involved in recruiting Cdc42, but not Rac1, to lipid raft microdomains, as well as the subsequent activation of this Rho GTPase and the downstream effector p21-activated kinase (PAK)1, as shown by fluorescence lifetime imaging microscopy. The establishment of a leading plasma membrane and the polarized morphology necessary for random migration are also dependent on ERM function and Cdc42 in motile breast carcinoma cells. Mechanistically, we show that the recruitment of the ERM-interacting Rho/Cdc42-specific guanine nucleotide exchange factor Dbl to the plasma membrane and to lipid raft microdomains requires the phosphorylated, active conformer of ezrin, which serves to tether the plasma membrane or its subdomains to the cytoskeleton. Together these data suggest a mechanism whereby precise spatial guanine nucleotide exchange of Cdc42 by Dbl is dependent on functional ERM proteins and is important for directional cell migration.  相似文献   

19.
This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease.  相似文献   

20.
Annexin A2, a calcium-, actin-, and lipid-binding protein involved in exocytosis, mediates the formation of lipid microdomains required for the structural and spatial organization of fusion sites at the plasma membrane. To understand how annexin A2 promotes this membrane remodeling, the involvement of cortical actin filaments in lipid domain organization was investigated. 3D electron tomography showed that cortical actin bundled by annexin A2 connected docked secretory granules to the plasma membrane and contributed to the formation of GM1-enriched lipid microdomains at the exocytotic sites in chromaffin cells. When an annexin A2 mutant with impaired actin filament–bundling activity was expressed, the formation of plasma membrane lipid microdomains and the number of exocytotic events were decreased and the fusion kinetics were slower, whereas the pharmacological activation of the intrinsic actin-bundling activity of endogenous annexin A2 had the opposite effects. Thus, annexin A2–induced actin bundling is apparently essential for generating active exocytotic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号