首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Crimean-Congo hemorrhagic fever (CCHF) is an acute tick-borne zoonotic disease. The disease has been reported in many countries of Africa, Asia, the Middle East, and in Eurasia. During the past decade, new foci of CCHF have emerged in the Balkan Peninsula, southwest Russia, the Middle East, western China, India, Africa, and Turkey. CCHF virus produces severe hemorrhagic manifestations in humans with fatality rates up to 30%. Vaccine development efforts have been significantly hampered by a lack of animal models and therefore, no protective vaccine has been achieved. Lately, IFN α/β receptor deficient (IFNAR−/−) mice have been established as a novel small animal model of CCHF virus infection. In the present study, we found that IFNAR−/− mice highly susceptible to CCHF virus Turkey-Kelkit06 strain. Immunization with the cell culture based vaccine elicited a significant level of protection against high dose challenge (1,000 PPFU) with a homologous CCHF virus in IFNAR−/− mice.  相似文献   

2.

Background

Mice lacking the type I interferon receptor (IFNAR−/− mice) reproduce relevant aspects of Crimean-Congo hemorrhagic fever (CCHF) in humans, including liver damage. We aimed at characterizing the liver pathology in CCHF virus-infected IFNAR−/− mice by immunohistochemistry and employed the model to evaluate the antiviral efficacy of ribavirin, arbidol, and T-705 against CCHF virus.

Methodology/Principal Findings

CCHF virus-infected IFNAR−/− mice died 2–6 days post infection with elevated aminotransferase levels and high virus titers in blood and organs. Main pathological alteration was acute hepatitis with extensive bridging necrosis, reactive hepatocyte proliferation, and mild to moderate inflammatory response with monocyte/macrophage activation. Virus-infected and apoptotic hepatocytes clustered in the necrotic areas. Ribavirin, arbidol, and T-705 suppressed virus replication in vitro by ≥3 log units (IC50 0.6–2.8 µg/ml; IC90 1.2–4.7 µg/ml). Ribavirin [100 mg/(kg×d)] did not increase the survival rate of IFNAR−/− mice, but prolonged the time to death (p<0.001) and reduced the aminotransferase levels and the virus titers. Arbidol [150 mg/(kg×d)] had no efficacy in vivo. Animals treated with T-705 at 1 h [15, 30, and 300 mg/(kg×d)] or up to 2 days [300 mg/(kg×d)] post infection survived, showed no signs of disease, and had no virus in blood and organs. Co-administration of ribavirin and T-705 yielded beneficial rather than adverse effects.

Conclusions/Significance

Activated hepatic macrophages and monocyte-derived cells may play a role in the proinflammatory cytokine response in CCHF. Clustering of infected hepatocytes in necrotic areas without marked inflammation suggests viral cytopathic effects. T-705 is highly potent against CCHF virus in vitro and in vivo. Its in vivo efficacy exceeds that of the current standard drug for treatment of CCHF, ribavirin.  相似文献   

3.
Arboviruses such as yellow fever virus (YFV) are transmitted between arthropod vectors and vertebrate hosts. While barriers limiting arbovirus population diversity have been observed in mosquitoes, whether barriers exist in vertebrate hosts is unclear. To investigate whether arboviruses encounter bottlenecks during dissemination in the vertebrate host, we infected immunocompetent mice and immune-deficient mice lacking alpha/beta interferon (IFN-α/β) receptors (IFNAR−/− mice) with a pool of genetically marked viruses to evaluate dissemination and host barriers. We used the live attenuated vaccine strain YFV-17D, which contains many mutations compared with virulent YFV. We found that intramuscularly injected immunocompetent mice did not develop disease and that viral dissemination was restricted. Conversely, 32% of intramuscularly injected IFNAR−/− mice developed disease. By following the genetically marked viruses over time, we found broad dissemination in IFNAR−/− mice followed by clearance. The patterns of viral dissemination were similar in mice that developed disease and mice that did not develop disease. Unlike our previous results with poliovirus, these results suggest that YFV-17D encounters no major barriers during dissemination within a vertebrate host in the absence of the type I IFN response.  相似文献   

4.
Rotavirus is a major cause of pediatric diarrheal illness worldwide. To explore the role of organized intestinal lymphoid tissues in infection by and immunity to rotavirus, lymphotoxin alpha-deficient (LTα−/−) mice that lack Peyer''s patches and mesenteric lymph nodes were orally infected with murine rotavirus. Systemic rotavirus was cleared within 10 days in both LTα−/− and wild-type mice, and both strains developed early and sustained serum antirotavirus antibody responses. However, unlike wild-type mice, which resolved the intestinal infection within 10 days, LTα−/− mice shed fecal virus for approximately 50 days after inoculation. The resolution of fecal virus shedding occurred concurrently with induction of intestinal rotavirus-specific IgA in both mouse strains. Induction of intestinal rotavirus-specific IgA in LTα−/− mice correlated with the (late) appearance of IgA-producing plasma cells in the small intestine. This, together with the absence of rotavirus-specific serum IgA, implies that secretory rotavirus-specific IgA was produced locally. These findings indicate that serum IgG responses are insufficient and imply that local intestinal IgA responses are important for the clearance of rotavirus from intestinal tissues. Furthermore, they show that while LTα-dependent lymphoid tissues are important for the generation of IgA-producing B cells in the intestine, they are not absolutely required in the setting of rotavirus infection. Moreover, the induction of local IgA-producing B cell responses can occur late after infection and in an LTα-independent manner.  相似文献   

5.
6.
The GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) causes an acute fatal polioencephalomyelitis in mice. Infection of susceptible mice with the DA strain of TMEV results in an acute polioencephalomyelitis followed by chronic immune-mediated demyelination with virus persistence in the central nervous system (CNS); DA virus infection is used as an animal model for multiple sclerosis. CD1d-restricted natural killer T (NKT) cells can contribute to viral clearance and regulation of autoimmune responses. To investigate the role of CD1d in TMEV infection, we first infected CD1d-deficient mice (CD1−/−) and wild-type BALB/c mice with GDVII virus. Wild-type mice were more resistant to virus than CD1−/− mice (50% lethal dose titers: wild-type mice, 10 PFU; CD1−/− mice, 1.6 PFU). Wild-type mice had fewer viral antigen-positive cells with greater inflammation in the CNS than CD1−/− mice. Second, an analysis of DA virus infection in CD1−/− mice was conducted. Although both wild-type and CD1−/− mice had similar clinical signs during the first 2 weeks after infection, CD1−/− mice had an increase in neurological deficits over those observed in wild-type mice at 3 to 5 weeks after infection. Although wild-type mice had no demyelination, 20 and 60% of CD1−/− mice developed demyelination at 3 and 5 weeks after infection, respectively. TMEV-specific lymphoproliferative responses, interleukin-4 (IL-4) production, and IL-4/gamma interferon ratios were higher in CD1−/− mice than in wild-type mice. Thus, CD1d-restricted NKT cells may play a protective role in TMEV-induced neurological disease by alteration of the cytokine profile and virus-specific immune responses.  相似文献   

7.
African horse sickness virus (AHSV) belongs to the genus Orbivirus. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA) expressing VP2 and NS1 proteins from AHSV-4. IFNAR(−/−) mice inoculated with DNA/rMVA-VP2,-NS1 from AHSV-4 in an heterologous prime-boost vaccination strategy generated significant levels of neutralizing antibodies specific of AHSV-4. In addition, vaccination stimulated specific T cell responses against the virus. The vaccine elicited partial protection against an homologous AHSV-4 infection and induced cross-protection against the heterologous AHSV-9. Similarly, IFNAR(−/−) mice vaccinated with an homologous prime-boost strategy with rMVA-VP2-NS1 from AHSV-4 developed neutralizing antibodies and protective immunity against AHSV-4. Furthermore, the levels of immunity were very high since none of vaccinated animals presented viraemia when they were challenged against the homologous AHSV-4 and very low levels when they were challenged against the heterologous virus AHSV-9. These data suggest that the immunization with rMVA/rMVA was more efficient in protection against a virulent challenge with AHSV-4 and both strategies, DNA/rMVA and rMVA/rMVA, protected against the infection with AHSV-9. The inclusion of the protein NS1 in the vaccine formulations targeting AHSV generates promising multiserotype vaccines.  相似文献   

8.
Lymphocytic choriomeningitis virus (LCMV) causes a systemic infection in mice with virus replication occurring in both peripheral tissues and secondary lymphoid organs. Because of the rapid systemic dissemination of the virus, the secondary lymphoid organs responsible for the induction of the LCMV-specific CD8 T cell response are poorly defined. We show that the mediastinal lymph node (MedLN) serves as the primary draining lymph node following LCMV infection. In addition, we demonstrate that the MedLN is responsible for priming the majority of the virus-specific CD8 T cell response. Following resolution of the acute infection, the draining MedLN exhibits characteristics of a reactive lymph node including an increased presence of germinal center B cells and increased cellularity for up to 60 days post-infection. Furthermore, the reactive MedLN harbors an increased frequency of CD62L effector memory CD8 T cells as compared to the non-draining lymph nodes. The accumulation of LCMV-specific CD62L memory CD8 T cells in the MedLN is independent of residual antigen and is not a unique feature of the MedLN as footpad infection with LCMV leads to a similar increase of virus-specific CD62L effector memory CD8 T cells in the draining popliteal lymph node. Our results indicate that CD62L effector memory CD8 T cells are granted preferential access into the draining lymph nodes for an extended time following resolution of an infection.  相似文献   

9.
10.
Arthritogenic alphaviruses, including Ross River virus (RRV) and chikungunya virus, are mosquito-borne viruses that cause significant human disease worldwide, including explosive epidemics that can result in thousands to millions of infected individuals. Similar to infection of humans, infection of C57BL/6 mice with RRV results in severe monocytic inflammation of bone, joint, and skeletal muscle tissues. We demonstrate here that the complement system, an important component of the innate immune response, enhances the severity of RRV-induced disease in mice. Complement activation products were detected in the inflamed tissues and in the serum of RRV-infected wild-type mice. Furthermore, mice deficient in C3 (C3−/−), the central component of the complement system, developed much less severe disease signs than did wild-type mice. Complement-mediated chemotaxis is essential for many inflammatory arthritides; however, RRV-infected wild-type and C3−/− mice had similar numbers and composition of inflammatory infiltrates within hind limb skeletal muscle tissue. Despite similar inflammatory infiltrates, RRV-infected C3−/− mice exhibited far less severe destruction of skeletal muscle tissue. In addition to these studies, complement activation was also detected in synovial fluid from RRV-infected patients. Taken together, these findings indicate that complement activation occurs in the tissues of humans and mice infected with RRV and suggest that complement plays an essential role in the effector phase, but not the inductive phase, of RRV-induced arthritis and myositis.  相似文献   

11.
IL-27 is an important and non-redundant regulator of effector T cell accumulation in non-lymphoid tissues during infection. Using malaria as a model systemic pro-inflammatory infection, we demonstrate that the aberrant accumulation of CD4+ T cells in the liver of infected IL27R−/− (WSX-1−/−) mice is a result of differences in cellular recruitment, rather than changes in T cell proliferation or cell death. We show that IL-27 both inhibits the migratory capacity of infection-derived CD4+ T cells towards infection-derived liver cells, but also suppresses the production of soluble liver-derived mediator(s) that direct CD4+ T cell movement towards the inflamed tissue. Although CCL4 and CCL5 expression was higher in livers of infected WSX-1−/− mice than infected WT mice, and hepatic CD4+ T cells from WSX-1−/− mice expressed higher levels of CCR5 than cells from WT mice, migration of CD4+ T cells to the liver of WSX-1−/− mice during infection was not controlled by chemokine (R) signalling. However, anti-IL-12p40 treatment reduced migration of CD4+ T cells towards infection-derived liver cells, primarily by abrogating the hepatotropic migratory capacity of T cells, rather than diminishing soluble tissue-derived migratory signals. These results indicate that IL-27R signalling restricts CD4+ T cell accumulation within the liver during infection primarily by suppressing T cell chemotaxis, which may be linked to its capacity to repress Th1 differentiation, as well as by inhibiting the production of soluble, tissue-derived chemotaxins.  相似文献   

12.
Rectal transmission is one of the main routes of infection by human immunodeficiency virus type 1 (HIV-1). To efficiently study transmission mechanisms and prevention strategies, a small animal model permissive for rectal transmission of HIV is mandatory. We tested the susceptibility of RAG2−/−γc−/− mice transplanted with human cord blood hematopoietic stem cells to rectal infection with HIV. We rectally exposed these humanized mice to cell-free and cell-associated HIV. All mice remained HIV negative as assessed by plasma viral load. The same mice infected intraperitoneally showed high levels of HIV replication. In the gut-associated lymphatic tissue, we found disproportionately smaller numbers of human cells than in other lymphoid organs. This finding may explain the observed resistance to rectal transmission of HIV. To increase the numbers of local HIV target cells and the likelihood of HIV transmission, we treated mice with different proinflammatory stimuli: local application of interleukin-1β, addition of seminal plasma to the inoculum, or induction of colitis with dextran sodium sulfate. These procedures attracted some human leukocytes, but the transmission rate was still very low. The humanized mice showed low levels of human engraftment in the intestinal tract and seem to be resistant to rectal transmission of HIV, and thus they are an unsuitable model for this application.  相似文献   

13.
The MHV-JHM strain of the murine coronavirus mouse hepatitis virus is much more neurovirulent than the MHV-A59 strain, although both strains use murine CEACAM1a (mCEACAM1a) as the receptor to infect murine cells. We previously showed that Ceacam1a−/− mice are completely resistant to MHV-A59 infection (E. Hemmila et al., J. Virol. 78:10156-10165, 2004). In vitro, MHV-JHM, but not MHV-A59, can spread from infected murine cells to cells that lack mCEACAM1a, a phenomenon called receptor-independent spread. To determine whether MHV-JHM could infect and spread in the brain independent of mCEACAM1a, we inoculated Ceacam1a−/− mice. Although Ceacam1a−/− mice were completely resistant to i.c. inoculation with 106 PFU of recombinant wild-type MHV-A59 (RA59) virus, these mice were killed by recombinant MHV-JHM (RJHM) and a chimeric virus containing the spike of MHV-JHM in the MHV-A59 genome (SJHM/RA59). Immunohistochemistry showed that RJHM and SJHM/RA59 infected all neural cell types and induced severe microgliosis in both Ceacam1a−/− and wild-type mice. For RJHM, the 50% lethal dose (LD50) is <101.3 in wild-type mice and 103.1 in Ceacam1a−/− mice. For SJHM/RA59, the LD50 is <101.3 in wild-type mice and 103.6 in Ceacam1a−/− mice. This study shows that infection and spread of MHV-JHM in the brain are dependent upon the viral spike glycoprotein. RJHM can initiate infection in the brains of Ceacam1a−/− mice, but expression of mCEACAM1a increases susceptibility to infection. The spread of infection in the brain is mCEACAM1a independent. Thus, the ability of the MHV-JHM spike to mediate mCEACAM1a-independent spread in the brain is likely an important factor in the severe neurovirulence of MHV-JHM in wild-type mice.  相似文献   

14.
Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.  相似文献   

15.
The type I interferon (IFN) signaling response limits infection of many RNA and DNA viruses. To define key cell types that require type I IFN signaling to orchestrate immunity against West Nile virus (WNV), we infected mice with conditional deletions of the type I IFN receptor (IFNAR) gene. Deletion of the Ifnar gene in subsets of myeloid cells resulted in uncontrolled WNV replication, vasoactive cytokine production, sepsis, organ damage, and death that were remarkably similar to infection of Ifnar −/− mice completely lacking type I IFN signaling. In Mavs−/−×Ifnar−/− myeloid cells and mice lacking both Ifnar and the RIG-I-like receptor adaptor gene Mavs, cytokine production was muted despite high levels of WNV infection. Thus, in myeloid cells, viral infection triggers signaling through MAVS to induce proinflammatory cytokines that can result in sepsis and organ damage. Viral pathogenesis was caused in part by massive complement activation, as liver damage was minimized in animals lacking complement components C3 or factor B or treated with neutralizing anti-C5 antibodies. Disease in Ifnar −/− and CD11c Cre+ Ifnar f/f mice also was facilitated by the proinflammatory cytokine TNF-α, as blocking antibodies diminished complement activation and prolonged survival without altering viral burden. Collectively, our findings establish the dominant role of type I IFN signaling in myeloid cells in restricting virus infection and controlling pathological inflammation and tissue injury.  相似文献   

16.
West Nile virus (WNV) is a RNA virus of the family Flaviviridae and the leading cause of mosquito-borne encephalitis in the United States. Humoral immunity is essential for protection against WNV infection; however, the requirements for initiating effective antibody responses against WNV infection are still unclear. CD22 (Siglec-2) is expressed on B cells and regulates B cell receptor signaling, cell survival, proliferation, and antibody production. In this study, we investigated how CD22 contributes to protection against WNV infection and found that CD22 knockout (Cd22−/−) mice were highly susceptible to WNV infection and had increased viral loads in the serum and central nervous system (CNS) compared to wild-type (WT) mice. This was not due to a defect in humoral immunity, as Cd22−/− mice had normal WNV-specific antibody responses. However, Cd22−/− mice had decreased WNV-specific CD8+ T cell responses compared to those of WT mice. These defects were not simply due to reduced cytotoxic activity or increased cell death but, rather, were associated with decreased lymphocyte migration into the draining lymph nodes (dLNs) of infected Cd22−/− mice. Cd22−/− mice had reduced production of the chemokine CCL3 in the dLNs after infection, suggesting that CD22 affects chemotaxis via controlling chemokine production. CD22 was not restricted to B cells but was also expressed on a subset of splenic DCIR2+ dendritic cells that rapidly expand early after WNV infection. Thus, CD22 plays an essential role in controlling WNV infection by governing cell migration and CD8+ T cell responses.  相似文献   

17.
We have recently demonstrated that MAP kinase phosphatase 2 (MKP-2) deficient C57BL/6 mice, unlike their wild-type counterparts, are unable to control infection with the protozoan parasite Leishmania mexicana. Increased susceptibility was associated with elevated Arginase-1 levels and reduced iNOS activity in macrophages as well as a diminished TH1 response. By contrast, in the present study footpad infection of MKP-2−/− mice with L. major resulted in a healing response as measured by lesion size and parasite numbers similar to infected MKP-2+/+ mice. Analysis of immune responses following infection demonstrated a reduced TH1 response in MKP-2−/− mice with lower parasite specific serum IgG2b levels, a lower frequency of IFN-γ and TNF-α producing CD4+ and CD8+ T cells and lower antigen stimulated spleen cell IFN-γ production than their wild-type counterparts. However, infected MKP-2−/− mice also had similarly reduced levels of antigen induced spleen and lymph node cell IL-4 production compared with MKP-2+/+ mice as well as reduced levels of parasite-specific IgG1 in the serum, indicating a general T cell hypo-responsiveness. Consequently the overall TH1/TH2 balance was unaltered in MKP-2−/− compared with wild-type mice. Although non-stimulated MKP-2−/− macrophages were more permissive to L. major growth than macrophages from MKP-2+/+ mice, reflecting their reduced iNOS and increased Arginase-1 expression, LPS/IFN-γ activation was equally effective at controlling parasite growth in MKP-2−/− and MKP-2+/+ macrophages. Consequently, in the absence of any switch in the TH1/TH2 balance in MKP-2−/− mice, no significant change in disease phenotype was observed.  相似文献   

18.
Lassa virus causes hemorrhagic Lassa fever in humans, while the related Old World arenaviruses Mopeia, Morogoro, and Mobala are supposedly apathogenic to humans and cause only inapparent infection in non-human primates. Here, we studied whether the virulence of Old World arenaviruses in humans and non-human primates is reflected in type I interferon receptor deficient (IFNAR-/-) mice by testing several strains of Lassa virus vs. the apathogenic viruses Mopeia, Morogoro, and Mobala. All Lassa virus strains tested—Josiah, AV, BA366, and Nig04-10—replicated to high titers in blood, lung, kidney, heart, spleen, brain, and liver and caused disease as evidenced by weight loss and elevation of aspartate and alanine aminotransferase (AST and ALT) levels with a high AST/ALT ratio. Lassa fever-like pathology included acute hepatitis, interstitial pneumonia, and pronounced disturbance of splenic cytoarchitecture. Infiltrations of activated monocytes/macrophages expressing inducible nitric oxide synthase and T cells were found in liver and lung. In contrast, Mopeia, Morogoro, and Mobala virus replicated poorly in the animals and acute inflammatory alterations were not noted. Depletion of CD4+ and CD8+ T cells strongly enhanced susceptibility of IFNAR-/- mice to the apathogenic viruses. In conclusion, the virulence of Old World arenaviruses in IFNAR-/- mice correlates with their virulence in humans and non-human primates. In addition to the type I interferon system, T cells seem to regulate whether or not an arenavirus can productively infect non-host rodent species. The observation that Lassa virus overcomes the species barrier without artificial depletion of T cells suggests it is able to impair T cell functionality in a way that corresponds to depletion.  相似文献   

19.
Mounting effective innate and adaptive immune responses are critical for viral clearance and the generation of long lasting immunity. It is known that production of inhibitory factors may result in the inability of the host to clear viruses, resulting in chronic viral persistence. Fibrinogen-like protein 2 (FGL2) has been identified as a novel effector molecule of CD4+CD25+ Foxp3+ regulatory T (Treg) cells that inhibits immune activity by binding to FCγRIIB expressed primarily on antigen presenting cells (APC). In this study, we show that infection of mice with Lymphocytic Choriomeningitis Virus WE (LCMV WE) leads to increased plasma levels of FGL2, which were detected as early as 2 days post-infection (pi) and persisted until day 50 pi. Mice deficient in FGL2 (fgl2−/−) had increased viral titers of LCMV WE in the liver early p.i but cleared the virus by day 12 similar to wild type mice. Dendritic cells (DC) isolated from the spleens of LCMV WE infected fgl2−/− had increased expression of the DC maturation markers CD80 and MHC Class II compared to wild type (fgl2+/+). Frequencies of CD8+ and CD4+ T cells producing IFNγ in response to ex vivo peptide re-stimulation isolated from the spleen and lymph nodes were also increased in LCMV WE infected fgl2 −/− mice. Increased frequencies of CD8+ T cells specific for LCMV tetramers GP33 and NP396 were detected within the liver of fgl2−/− mice. Plasma from fgl2−/− mice contained higher titers of total and neutralizing anti-LCMV antibody. Enhanced anti-viral immunity in fgl2−/− mice was associated with increased levels of serum alanine transaminase (ALT), hepatic necrosis and inflammation following LCMV WE infection. These data demonstrate that targeting FGL2 leads to early increased viral replication but enhanced anti-viral adaptive T & B cell responses. Targeting FGL2 may enhance the efficacy of current anti-viral therapies for hepatotropic viruses.  相似文献   

20.
Cell-mediated immune responses are known to be critical for control of mycobacterial infections whereas the role of B cells and humoral immunity is unclear. B cells can modulate immune responses by secretion of immunoglobulin, production of cytokines and antigen-presentation. To define the impact of B cells in the absence of secreted immunoglobulin, we analyzed the progression of Mycobacterium tuberculosis (Mtb) infection in mice that have B cells but which lack secretory immunoglobulin (AID−/−µS−/−mice). AID−/−µS−/− mice accumulated a population of activated B cells in the lungs when infected and were more susceptible to aerosol Mtb when compared to wild type (C57BL/6) mice or indeed mice that totally lack B cells. The enhanced susceptibility of AID−/−µS−/− mice was not associated with defective T cell activation or expression of a type 1 immune response. While delivery of normal serum to AID−/−µS−/− mice did not reverse susceptibility, susceptibility in the spleen was dependent upon the presence of B cells and susceptibility in the lungs of AID−/−µS−/−mice was associated with elevated expression of the cytokines IL-6, GM-CSF, IL-10 and molecules made by alternatively activated macrophages. Blocking of IL-10 signaling resulted in reversal of susceptibility in the spleens and lungs of AID−/−µS−/− mice. These data support the hypothesis that B cells can modulate immunity to Mtb in an organ specific manner via the modulation of cytokine production and macrophage activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号