首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have determined the complete nucleotide sequence for TEF-1, one of three genes coding for elongation factor (EF)-1 alpha in Mucor racemosus. The deduced EF-1 alpha protein contains 458 amino acids encoded by two exons. The presence of an intervening sequence located near the 3' end of the gene was predicted by the nucleotide sequence data and confirmed by alkaline S1 nuclease mapping. The amino acid sequence of EF-1 alpha was compared to the published amino acid sequences of EF-1 alpha proteins from Saccharomyces cerevisiae and Artemia salina. These proteins shared nearly 85% homology. A similar comparison to the functionally analogous EF-Tu from Escherichia coli revealed several regions of amino acid homology suggesting that the functional domains are conserved in elongation factors from these diverse organisms. Secondary structure predictions indicated that alpha helix and beta sheet conformations associated with the functional domains in EF-Tu are present in the same relative location in EF-1 alpha from M. racemosus. Through this comparative structural analysis we have predicted the general location of functional domains in EF-1 alpha which interact with GTP and tRNA.  相似文献   

2.
The translation elongation factor EF-1 alpha of the yeast Saccharomyces cerevisiae is coded for by two genes, called TEF1 and TEF2. Both genes were cloned. TEF1 maps on chromosome II close to LYS2. The location of TEF2 is unknown. TEF2 alone is sufficient to promote growth of the cells as shown with a strain deleted for TEF1. TEF1 and TEF2 were originally identified as two strongly transcribed genes, which most likely code for an identical or nearly identical protein as judged from S1 nuclease protection experiments with mRNA-DNA hybrids. The DNA sequence analysis of TEF1 allowed the prediction of the protein sequence. This was shown, by a search in the Dayhoff protein data bank, to represent the translation elongation factor EF-1 alpha due to the striking similarity to EF-1 alpha from the shrimp Artemia. A search for TEF1 homologous sequences in several yeast species shows, in most cases, duplicated genes and a much higher sequence conservation than among genes encoding amino acid biosynthetic enzymes.  相似文献   

3.
Two Candida albicans genes that encode the protein synthesis factor elongation factor 1 alpha (EF-1 alpha) were cloned by using a heterologous TEF1 probe from Mucor racemosus to screen libraries of C. albicans genomic DNA. Sequence analysis of the two clones showed that regions of DNA flanking the coding regions of the two genes were not homologous, verifying the presence of two genes, called TEF1 and TEF2, for EF-1 alpha in C. albicans. The coding regions of TEF1 and TEF2 differed by only five nucleotides and encoded identical EF-1 alpha proteins of 458 amino acids. Both genes were transcribed into mRNA in vivo, as shown by hybridization of oligonucleotide probes, which bound specifically to the 3' nontranslated regions of TEF1 and TEF2, respectively, to C. albicans total RNA in Northern (RNA) blot analysis. The predicted EF-1 alpha protein of C. albicans was more similar to Saccharomyces cerevisiae EF-1 alpha than to M. racemosus EF-1 alpha. Furthermore, codon bias and the promoter and termination signals of the C. albicans EF-1 alpha proteins were remarkably similar to those of S. cerevisiae EF-1 alpha. Taken together, these results suggest that C. albicans is more closely related to the ascomycete S. cerevisiae than to the zygomycete M. racemosus.  相似文献   

4.
5.
Messenger RNA for yeast cytosolic polypeptide chain elongation factor 1 alpha (EF-1 alpha) was partially purified from Saccharomyces cerevisiae. Double-stranded complementary DNA (cDNA) was synthesized and cloned in Escherichia coli with pBR327 as a vector. Recombinant plasmid carrying yEF-1 alpha cDNA was identified by cross-hybridization with the E. coli tufB gene and the yeast mitochondrial EF-Tu gene (tufM) under non-stringent conditions. A yeast gene library was then screened with the EF-1 alpha cDNA and several clones containing the chromosomal gene for EF-1 alpha were isolated. Restriction analysis of DNA fragments of these clones as well as the Southern hybridization of yeast genomic DNA with labelled EF-1 alpha cDNA indicated that there are two EF-1 alpha genes in S. cerevisiae. The nucleotide sequence of one of the two EF-1 alpha genes (designated as EF1 alpha A) was established together with its 5'- and 3'-flanking sequences. The sequence contained 1374 nucleotides coding for a protein of 458 amino acids with a calculated mol. wt. of 50 300. The derived amino acid sequence showed homologies of 31% and 32% with yeast mitochondrial EF-Tu and E. coli EF-Tu, respectively.  相似文献   

6.
7.
8.
9.
Fractionation of yeast extracts on heparin-agarose revealed the presence of a DNA footprinting activity that interacted specifically with the 5'-upstream region of TEF1 and TEF2 genes coding for the protein synthesis elongation factor EF-1 alpha, and of the ribosomal protein gene RP51A. The protected regions encompassed the conserved sequences 'HOMOL1' (AACATC TA CG T A G CA) or RPG-box (ACCCATACATT TA) previously detected 200-400 bp upstream of most of the yeast ribosomal protein genes examined. Two types of protein-DNA complexes were separated by a gel electrophoresis retardation assay. Complex 1, formed on TEF1, TEF2 and RP51A 5'-flanking region, was correlated with the protection of a 25-bp sequence. Complex 2, formed on TEF2 or RP51A probes at higher protein concentrations, corresponded to an extended footprint of 35-40 bp. The migration characteristics of the protein-DNA complexes and competition experiments indicated that the same component(s) interacted with the three different promoters. It is suggested that this DNA factor(s) is required for activation and coordinated regulation of the whole family of genes coding for the translational apparatus.  相似文献   

10.
P Tekamp-Olson  R Najarian  R L Burke 《Gene》1988,73(1):153-161
We have isolated the gene which encodes the glycolytic enzyme phosphoglucoisomerase (PGI) from the yeast Saccharomyces cerevisiae by functional complementation of a yeast mutant deficient in PGI activity with DNA from a wild-type yeast genomic library. The cloned gene has been localized by hybridization of specific DNA fragments to total yeast poly(A)+ RNA and by complementation of the mutant phenotype with subclones. The gene is expressed as an abundant mRNA of 1.9-kb and encodes a protein of 554 amino acids with an Mr of 61310. The nucleotide sequence of the gene as well as the 5' and 3' flanking regions are presented. The predicted PGI amino acid sequence shows a high degree of homology with the sequence predicted for human and mouse neuroleukin, a putative neurotropic factor. The codon usage within the coding region is very restricted, characteristic of a highly expressed yeast gene.  相似文献   

11.
12.
As with many other fungi, including the budding yeast Saccharomyces cerevisiae, the dimorphic fungus Candida albicans encodes the novel translation factor, elongation factor 3 (EF-3). Using a rapid affinity chromatography protocol, EF-3 was purified to homogeneity from C. albicans and shown to have an apparent molecular mass of 128 kDa. A polyclonal antibody raised against C. albicans EF-3 also showed cross-reactivity with EF-3 from S. cerevisiae. Similarly, the S. cerevisiae TEF3 gene (encoding EF-3) showed cross-hybridization with genomic DNA from C. albicans in Southern hybridization analysis, demonstrating the existence of a single gene closely related to TEF3 in the C. albicans genome. This gene was cloned by using a 0.7 kb polymerase chain reaction-amplified DNA fragment to screen to C. albicans gene library. DNA sequence analysis of 200 bp of the cloned fragment demonstrated an open reading frame showing 51% predicted amino acid identity between the putative C. albicans EF-3 gene and its S. cerevisiae counterpart over the encoded 65-amino-acid stretch. That the cloned C. albicans sequence did indeed encode EF-3 was confirmed by demonstrating its ability to rescue an otherwise non-viable S. cerevisiae tef3:HIS3 null mutant. Thus EF-3 from C. albicans shows both structural and functional similarity to EF-3 from S. cerevisiae.  相似文献   

13.
The unique yeast translational factor EF-3 participates in the elongation cycle by stimulating the function of EF-1 alpha in binding aminoacyl-tRNA to the ribosome. We have isolated the structural gene encoding EF-3 from the yeast Saccharomyces cerevisiae. The YEF3 gene is found in one copy per haploid genome and is essential for vegetative growth. DNA sequence analysis reveals that the YEF3 gene contains an open reading frame of 1044 codons. The deduced amino acid sequence has two repeats of a nucleotide-binding motif. Each of these repeats shows similarity to the nucleotide-binding motif of hydrophilic, membrane-associated ATPases including human multidrug resistant protein MDR. Factor 3 manifests ribosome-dependent ATP hydrolysis. Introduction of the YEF3 gene on a high copy number plasmid into yeast strains increases the ribosome-dependent ATPase activity and EF-3 protein levels by 3-5-fold. Yeast strains containing elevated EF-3 protein levels also exhibit increased sensitivity to the aminoglycoside antibiotics hygromycin and paromomycin. These drugs are known to increase translational errors. These observations suggest that EF-3 may affect translational accuracy.  相似文献   

14.
The large subunit of eukaryotic ribosomes contains acidic phosphoproteins which are related to L7/L12 from Escherichia coli. In the brine shrimp Artemia these proteins are designated eL12 and eL12'. We have isolated cDNA clones for these proteins from a cDNA bank that was constructed by the use of size-fractionated poly(A)-rich RNA (8-10S fraction) from Artemia and a synthetic oligonucleotide as primer. Clones containing DNA sequences coding for eL12 and eL12 were characterized by hybrid-selected translation and DNA sequencing. The proteins eL12 and eL12' share an identical peptide of 22 amino acids at their carboxy termini whereas the remaining part of the protein shows little sequence homology. The nucleotide sequences show a different codon use for the amino acids in the common carboxy terminus, thereby excluding a common exon coding for this part of both proteins. Despite the differences in amino acid sequence in the major part of eL12 and eL12' the proteins have a considerable degree of homology on the basis of the distribution of hydrophobic and hydrophilic amino acids over the polypeptide chains, in agreement with a related folding and function of both proteins. Relative levels of mRNA coding for eL12, eL12' and elongation factor 1 alpha were determined during the development of Artemia from a dormant cyst to a nauplius. The data show a coordinate expression of the genes for EF-1 alpha and both ribosomal proteins, excluding a differential expression of the genes for these related ribosomal proteins during embryogenesis. Analysis of the gene copy number for eL12 and eL12' indicates the presence of a few genes for each protein.  相似文献   

15.
16.
A mutational analysis of the eukaryotic elongation factor EF-1 alpha indicates that this protein functions to limit the frequency of errors during genetic code translation. We found that both amino acid misincorporation and reading frame errors are controlled by EF-1 alpha. In order to examine the function of this protein, the TEF2 gene, which encodes EF-1 alpha in Saccharomyces cerevisiae, was mutagenized in vitro with hydroxylamine. Sixteen independent TEF2 alleles were isolated by their ability to suppress frameshift mutations. DNA sequence analysis identified eight different sites in the EF-1 alpha protein that elevate the frequency of mistranslation when mutated. These sites are located in two different regions of the protein. Amino acid substitutions located in or near the GTP-binding and hydrolysis domain of the protein cause suppression of frameshift and nonsense mutations. These mutations may effect mistranslation by altering the binding or hydrolysis of GTP. Amino acid substitutions located adjacent to a putative aminoacyl-tRNA binding region also suppress frameshift and nonsense mutations. These mutations may alter the binding of aminoacyl-tRNA by EF-1 alpha. The identification of frameshift and nonsense suppressor mutations in EF-1 alpha indicates a role for this protein in limiting amino acid misincorporation and reading frame errors. We suggest that these types of errors are controlled by a common mechanism or closely related mechanisms.  相似文献   

17.
We have isolated the cDNA for 42Sp48 and EF-1 alpha from mixed stage oocytes and tailbud (stage 22) Xenopus laevis cDNA libraries by use of the cDNA for human elongation factor-1 alpha (EF-1 alpha) as probe. The nucleotide and deduced amino acid sequences of the entire coding region of 42Sp48 and EF-1 alpha cDNA were established. The proposed functional homology of the proteins is reflected in highly conserved amino acid sequences (91% identity), while the large number of silent mutations at the gene level may serve to prevent recombination at their loci. 42Sp48 is apparently encoded by two genes in Xenopus, while no sequences corresponding to 42Sp48 could be found in murine or human genomic DNA. 42Sp48 has been proposed to act as a stage-specific elongation factor in Xenopus. Comparison of the deduced amino acid sequences of 42Sp48 and EF-1 alpha with that of elongation factor Tu from E. coli, for which the three-dimensional structure including that of the GTP binding sites have been determined, supports this hypothesis.  相似文献   

18.
Cytoplasmic elongation factor 1 alpha (EF-1 alpha) was purified to homogeneity from the yeast Saccharomyces cerevisiae using a large-scale procedure. The three steps of purification used were batch adsorption on phosphocellulose, phosphocellulose chromatography and, as the last step, GDP-Sepharose or Biorex column chromatography. The protein is very basic (pI = 9.2) and has an apparent molecular mass of 49 kDa, as determined by polyacrylamide gel electrophoresis using denaturing conditions. It is one of the most abundant proteins in yeast (about 5% of total soluble protein), as shown by two-dimensional gel electrophoresis and by immunological titration. A strong immunological and structural homology was found between yeast EF-1 alpha and elongation factors from other sources. Common immunological features were found between yeast and wheat germ EF-1 alpha. Tryptic hydrolysis of yeast EF-1 alpha in the presence of 25% glycerol generated a large trypsin-resistant polypeptide (Mr = 43,000) which had the same NH2-terminal sequence as the proteolyzed product from rabbit reticulocyte, Artemia salina EF-1 alpha and Escherichia coli EF-Tu. Completed DNA sequence determination of one structural gene for yeast EF-1 alpha confirmed a remarkable conservation of several protein sequence domains in yeast and animal EF-1 alpha (Cottrelle, P., Thiele, D., Price, V., Memet, S., Micouin, J.Y., Marck, C., Buhler, J.M. Sentenac, A., and Fromageot, P. (1985) J. Biol. Chem. 260, 3090-3096).  相似文献   

19.
20.
The elongation factor 2 (EF-2) genes of the yeast Saccharomyces cerevisiae have been cloned and characterized with the ultimate goal of gaining a better understanding of the mechanism and control of protein synthesis. Two genes (EFT1 and EFT2) were isolated by screening a bacteriophage lambda yeast genomic DNA library with an oligonucleotide probe complementary to the domain of EF-2 that contains diphthamide, the unique posttranslationally modified histidine that is specifically ADP-ribosylated by diphtheria toxin. Although EFT1 and EFT2 are located on separate chromosomes, the DNA sequences of the two genes differ at only four positions out of 2526 base pairs, and the predicted protein sequences are identical. Genetic deletion of each gene revealed that at least one functional copy of either EFT gene is required for cell viability. Messenger RNA levels of yeast EF-2 parallel cellular growth and peak in mid-log phase cultures. The EF-2 protein sequence is strikingly conserved through evolution. Yeast EF-2 is 66% identical to, and shares over 85% homology with, human EF-2. In addition, yeast and mammalian EF-2 share identical sequences at two critical functional sites: (i) the domain containing the histidine residue that is modified to diphthamide and (ii) the threonine residue that is specifically phosphorylated in vivo in mammalian cells by calmodulin-dependent protein kinase III, also known as EF-2 kinase. Furthermore, yeast EF-2 also contains the Glu-X-X-Arg-X-Ile-Thr-Ile "effector" sequence motif that is conserved among all known elongation factors, and its GTP-binding domain exhibits strong homology to the G-domain of Escherichia coli elongation factor Tu (EF-Tu) and other G-protein family members. Based upon these observations, we have modeled the G-domain of the deduced EF-2 protein sequence to the solved crystallographic structure for EF-Tu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号