首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Arabidopsis thaliana, the activation process of the A1 EF-1 gene depends on several elements. Using the GUS reporter gene, transient expression experiments have shown that mutations of upstream cis-acting elements of the A1 promoter, or the deletion of an intron located within the 5 non-coding region, similarly affect expression in dicot or monocot protoplasts. The results reported here strongly suggest that this 5 intron is properly spliced in Zea mays. We show that two trans-acting factors, specifically interacting with an upstream activating sequence (the TEF 1 box), are present in nuclear extracts prepared from A. thaliana, Brassica rapa, Nicotiana tabacum and Z. mays. In addition, a DNA sequence homologous to the TEF 1 box, found at approximately the same location within a Lycopersicon esculentum EF-1 promoter, interacts with the same trans-acting factors. Homologies found between the A. thaliana and L. esculentum TEF 1 box sequences have allowed us to define mutations of this upstream element which affect the interaction with the corresponding trans-acting factors. These results support the notion that the activation processes of A. thaliana EF-1 genes have been conserved among angiosperms and provide interesting data on the functional structure of the TEF 1 box.  相似文献   

2.
3.
4.
5.
Two Candida albicans genes that encode the protein synthesis factor elongation factor 1 alpha (EF-1 alpha) were cloned by using a heterologous TEF1 probe from Mucor racemosus to screen libraries of C. albicans genomic DNA. Sequence analysis of the two clones showed that regions of DNA flanking the coding regions of the two genes were not homologous, verifying the presence of two genes, called TEF1 and TEF2, for EF-1 alpha in C. albicans. The coding regions of TEF1 and TEF2 differed by only five nucleotides and encoded identical EF-1 alpha proteins of 458 amino acids. Both genes were transcribed into mRNA in vivo, as shown by hybridization of oligonucleotide probes, which bound specifically to the 3' nontranslated regions of TEF1 and TEF2, respectively, to C. albicans total RNA in Northern (RNA) blot analysis. The predicted EF-1 alpha protein of C. albicans was more similar to Saccharomyces cerevisiae EF-1 alpha than to M. racemosus EF-1 alpha. Furthermore, codon bias and the promoter and termination signals of the C. albicans EF-1 alpha proteins were remarkably similar to those of S. cerevisiae EF-1 alpha. Taken together, these results suggest that C. albicans is more closely related to the ascomycete S. cerevisiae than to the zygomycete M. racemosus.  相似文献   

6.
One gene coding for yeast cytoplasmic elongation factor 1 alpha (EF-1 alpha) was isolated by colony hybridization using a cDNA probe prepared from purified EF-1 alpha mRNA. A recombinant plasmid, pLB1, with a 6-kilobase yeast DNA insert, was found by hybrid selection and translation experiments to carry the entire gene. The nucleotide sequence of the gene with its 5'- and 3'-flanking regions was determined. The 5' and 3' ends of EF-1 alpha mRNA were localized by the S1 nuclease mapping technique. The cloned gene, called TEF1, encodes a protein of 458 amino acids (Mr = 50,071) in a single, uninterrupted reading frame. The amino acid sequence shows a strong homology with several domains of Artemia salina EF-1 alpha cytoplasmic factor, as evidenced by diagonal dot matrix analysis. Protein sequence homology is comparatively much lower with the yeast mitochondrial elongation factor. S1 nuclease mapping of the mRNA, hybridization analysis of chromosomal DNA using intragenic or extragenic DNA probes, and gene disruption experiments demonstrated the existence of two genes coding for the cytoplasmic elongation factor EF-1 alpha/haploid genome. The presence of an intact chromosomal TEF1 gene is not essential for growth of haploid yeast cells.  相似文献   

7.
8.
Fractionation of yeast extracts on heparin-agarose revealed the presence of a DNA footprinting activity that interacted specifically with the 5'-upstream region of TEF1 and TEF2 genes coding for the protein synthesis elongation factor EF-1 alpha, and of the ribosomal protein gene RP51A. The protected regions encompassed the conserved sequences 'HOMOL1' (AACATC TA CG T A G CA) or RPG-box (ACCCATACATT TA) previously detected 200-400 bp upstream of most of the yeast ribosomal protein genes examined. Two types of protein-DNA complexes were separated by a gel electrophoresis retardation assay. Complex 1, formed on TEF1, TEF2 and RP51A 5'-flanking region, was correlated with the protection of a 25-bp sequence. Complex 2, formed on TEF2 or RP51A probes at higher protein concentrations, corresponded to an extended footprint of 35-40 bp. The migration characteristics of the protein-DNA complexes and competition experiments indicated that the same component(s) interacted with the three different promoters. It is suggested that this DNA factor(s) is required for activation and coordinated regulation of the whole family of genes coding for the translational apparatus.  相似文献   

9.
10.
Jeon JS  Lee S  An G 《Molecules and cells》2008,26(5):474-480
OsMADS1 is a rice MADS box gene necessary for floral development. To identify the key cis-regulatory regions for its expression, we utilized transgenic rice plants expressing GUS fusion constructs. Histochemical analysis revealed that the 5.7-kb OsMADS1 intragenic sequences, encompassing exon 1, intron 1, and a part of exon 2, together with the 1.9-kb 5' upstream promoter region, are required for the GUS expression pattern that coincides with flower-preferential expression of OsMADS1. In contrast, the 5' upstream promoter sequence lacking this intragenic region caused ectopic expression of the reporter gene in both vegetative and reproductive tissues. Notably, incorporation of the intragenic region into the CaMV35S promoter directed the GUS expression pattern similar to that of the endogenous spatial expression of OsMADS1 in flowers. In addition, our transient gene expression assay revealed that the large first intron following the CaMV35S minimal promoter enhances flower-preferential expression of GUS. These results suggest that the OsMADS1 intragenic sequence, largely intron 1, contains a key regulatory region(s) essential for expression.  相似文献   

11.
12.
D McElroy  W Zhang  J Cao    R Wu 《The Plant cell》1990,2(2):163-171
  相似文献   

13.
A gene encoding a yeast homologue of translation elongation factor 1 gamma (EF-1 gamma), TEF3, was isolated as a gene dosage extragenic suppressor of the cold-sensitive phenotype of the Saccharomyces cerevisiae drs2 mutant. The drs2 mutant is deficient in the assembly of 40S ribosomal subunits. We have identified a second gene, TEF4, that encodes a protein highly related to both the Tef3p protein (Tef3p), and EF-1 gamma isolated from other organisms. In contrast to TEF3, the TEF4 gene contains an intron. Gene disruptions showed that neither gene is required for mitotic growth. Haploid spores containing disruptions of both genes are viable and have no defects in ribosomal subunit composition or polyribosomes. Unlike TEF3, extra copies of TEF4 do not suppress the cold-sensitive 40S ribosomal subunit deficiency of a drs2 strain. Low-stringency genomic Southern hybridization analysis indicates there may be additional yeast genes related to TEF3 and TEF4.  相似文献   

14.
D W Kim  T Uetsuki  Y Kaziro  N Yamaguchi  S Sugano 《Gene》1990,91(2):217-223
We have characterized the promoter region of the human elongation factor 1 alpha-encoding gene (EF-1 alpha) and developed a versatile expression system which has a wide host range and a high efficiency of gene expression. To identify the promoter region of the EF-1 alpha gene necessary for efficient gene expression, we constructed four pEF-CAT plasmids that have the bacterial cat gene fused to four different sites of the human EF-1 alpha gene: (i) ligated to the end of the TATA box (pEF220-CAT); (ii) ligated in exon 1 (pEF204-CAT and pEF233-CAT), and (iii) ligated in exon 2 (pEF321-CAT). All the pEF-CAT plasmids were highly expressed in all the cell types tested, including fibroblasts and lymphoid cells. Plasmid pEF321-CAT, which contains the first exon and the first intron, gave the highest level of cat expression. Plasmids pEF204- and pEF233-CAT, which contain part of the first exon but do not contain the first intron, were less efficient in cat expression than was pEF321-CAT. Plasmid pEF220-CAT, which lacks both the first exon and the first intron, was the least efficient. Plasmid pEF321-CAT was several- to 100-fold more efficient in cat expression than plasmid pSV2-CAT depending on the recipient cell types. The promoter of pEF321 plasmid also directed the stable expression of the bacterial neo gene more efficiently than the promoter of the simian virus 40 (SV40) early gene or the long terminal repeat of Rous sarcoma virus. Using this system, the SV40 early gene and the cDNA encoding human CD4 were also expressed efficiently.  相似文献   

15.
16.
A cotton Ltp3 gene and its 5' and 3' flanking regions have been cloned with a PCR-based genomic DNA walking method. The amplified 2.6 kb DNA fragment contains sequences corresponding to GH3 cDNA which has been shown to encode a lipid transfer protein (LTP3). The gene has an intron of 80 bp which is located in the region corresponding to the C-terminus of LTP3. The Ltp3 promoter was systematically analyzed in transgenic tobacco plants by employing the Escherichia coli beta-glucuronidase gene (GUS) as a reporter. The results of histochemical and fluorogenic GUS assays indicate that the 5' flanking region of the Ltp3 gene contains cis-elements conferring the trichome specific activity of Ltp3 promoter.  相似文献   

17.
18.
19.
20.
Potassium (K+) channels play multiple roles in higher plants, and have been characterized electrophysiologically in various subcellular membranes. The K+ channel AtKCO1 from Arabidopsis thaliana is the prototype of a new family of plant K+ channels. In a previous study the protein has been functionally characterized after heterologous expression in Baculovirus-infected insect cells. In order to obtain further information on the physiological function of AtKCO1, the gene expression pattern and subcellular localization of the protein in plants were investigated. The regulatory function of the 5' region of the AtKCO1 gene was examined in transgenic A. thaliana plants carrying beta-glucuronidase (GUS) fusion constructs. Our analysis demonstrates that the AtKCO1 promoter is active in various tissues and cell types, and the highest GUS activity could be detected in mitotically active tissues of the plant. Promoter activity was strongly dependent on the presence of a 5' leader intron. The same overall structure was identified in two genes encoding AtKCO1-like K+ channels from Solanum tuberosum (StKCO1alpha and StKCO1beta). To investigate the subcellular localization of AtKCO1, the channel protein, as well as a fusion protein of AtKCO1 with green fluorescence protein (GFP), were expressed in transgenic tobacco BY2 cells. In sucrose density gradients, both proteins co-fractionate with tonoplast markers (Nt-TIPa, vATPase). In fluorescence images from transgenic AtKCO1-GFP BY2 cells fluorescence was exclusively detected in the tonoplast. Thus AtKCO1 is the first cloned K+ channel demonstrated to be a vacuolar K+ channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号