首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
《Zoology (Jena, Germany)》2014,117(4):237-244
Anthropogenic introduction of a plant species may cause novel encounters between the plant and local herbivores, and initiate evolutionary changes in host plant usage by herbivores. Until recently the endemic aquatic plant Hygrophila pogonocalyx was endangered and had a restricted distribution in Taiwan. Massive restoration efforts since 1997 have led to an expansion of the plant's distribution and a novel encounter between it and an Asian butterfly, the chocolate pansy, Junonia iphita (Nymphalidae). This butterfly appears to have colonized H. pogonocalyx, switching from its original host, Strobilanthes penstemonoides var. formosana. In the present study, we aimed to investigate whether the utilization of H. pogonocalyx as a host plant has initiated a differentiation between butterflies using the novel and the original hosts. To this purpose we collected butterflies from patches of the two host plants which grow sympatrically. We tested oviposition preference for the two hosts and larval performance on them. Female adults exhibited distinct oviposition preference toward the host plant their mothers preferred. Offspring showed greater survivorship and pupal weight when fed on the host plant their mothers preferred. Male adults displayed territorial behaviors on the host plant that their mothers had preferred. Finally, the survival rate of offspring produced from cross-mating between individuals with different host plant preference was lower than that of non-hybrids. Taken together, we suggest that genetic differentiation has occurred between individuals preferring H. pogonocalyx versus S. penstemonoides as host plants via host shifting. This process was likely induced by the mass restoration of the formerly rare and endangered plant species.  相似文献   

2.
Variation in the degree of synchrony among host plants and herbivores can disrupt or intensify species interactions, alter the strength of natural selection on traits associated with phenological timing, and drive novel host plant associations. We used field observations from three regions during four seasons to examine how timing of the butterfly herbivore Anthocharis cardamines relative to six host plant species (Arabis hirsuta, Cardamine pratensis, Arabis glabra, Arabidopsis thaliana, Thlaspi caerulescens and Capsella bursa‐pastoris) influenced host species use and the choice of host plant individuals within populations. Butterflies laid a larger fraction of their eggs on species that were closer to the butterfly's preferred stage of development than on other host species. Within host plant populations, butterflies showed a stronger preference for individuals with a late phenology when plants within the population were on average more developed at the time of butterfly flight. Our results suggest that changes in synchrony between herbivores and their host plants are associated with changes in both host species use and the choice of host plant individuals differing in phenology within populations. This is likely to be an important mechanism generating variation in interaction intensities and trait selection in the wild, and therefore also relevant for understanding how anthropogenic induced changes, such as global warming, will influence natural communities.  相似文献   

3.
This study evaluates the adaptive significance of host preferences and searching behaviour in Vancouver and Canberra populations of the cabbage butterfly Pieris rapae (L.). As a result of a complex of responses to plant age, the butterflies concentrate their eggs on middle-aged plants. Young larvae develop faster and survive better on young plants than old ones, but larvae on smaller plants are more susceptible to crowding effects. Thus a preference for plants which are well-grown but not too old is selectively advantageous. By contrast, the butterflies’ host species preferences appear non-adaptive, and are unrelated to the quality of the host as larval food. Vancouver butterflies change their flight direction often and are very responsive to hosts, thereby generating a very aggregated distribution at a low cost in flight time. Canberra butterflies tend to fly in straight lines and are less responsive to hosts; their egg distribution is consequently more nearly random, but they fly further for each egg they lay. The relative costs of aggregation and increased flight time differ between the populations in a manner consistent with the observed behavioural differences.  相似文献   

4.
Abstract 1. The evolution of reproductive isolation between recently diverged or incipient species is a critical component of speciation and a major focus of speciation models. In phytophagous insects, host plant fidelity (the habit of mating and ovipositing on a single host species) can contribute to assortative mating and reproductive isolation between populations adapting to alternative hosts. The potential role of host plant fidelity in the evolution of reproductive isolation was examined in a pair of North American blue butterfly species, Lycaeides idas and L. melissa .
2. These species are morphologically distinct and populations of each species utilise different host plants; however they share 410 bp haplotypes of the mitochondrial cytochrome oxidase subunit I (COI) gene, indicating recent divergence.
3. Some populations using native hosts exhibited strong fidelity for their natal host plant over the hosts used by nearby populations. Because these butterflies mate on or near the host plant, the development of strong host fidelity may create reproductive isolation among populations on different hosts and restrict gene flow.
4. Tests of population differentiation using allozyme allele frequency data did not provide convincing evidence of restricted gene flow among populations. Based on morphological differences, observed ecological specialisation, and the sharing of genetic markers, these butterflies appear to be undergoing adaptive radiation driven at least partially by host shifts. Neutral genetic markers may fail to detect the effects of very recent host shifts in these populations due to gene flow and/or the recency of divergence and shared ancestral polymorphism.  相似文献   

5.
Four allopatric populations of the widely distributed western anise swallowtail butterfly, Papilio zelicaon, use different plant genera as hosts, but simultaneous choice experiments showed that these populations have diverged only slightly in oviposition preference. Of the four populations—two from southeastern Washington State, one from coastal southwestern Washington State, and one from central California—three use hosts that are not available to any of the others. Although variation for the degree of preference for particular plant species occurred within and among populations, all four populations ranked hosts in the same overall order. Monophagy on a local, low-ranking host outside the range of high-ranking hosts did not necessarily lead to the loss of preference for those high-ranking hosts, thereby indicating that the high-ranking hosts would still be accepted, and in some cases even preferred, if a population encountered them again. Hence, the overall preference hierarchy among P. zelicaon populations appears to be evolutionarily conservative. Analyses of differences among families within the California population indicated that increased preference for some hosts is inversely correlated, whereas preference for other hosts may be uncorrelated. Positive correlations may also occur but were not observed among the plant species tested. Overall, the results indicate local monophagy on different plant species in P. zelicaon has not involved major reorganizations in the preference hierarchy of ovipositing females, even in populations that may have fed on a low-ranking host for many generations. Instead, small increases in preference for local hosts have occurred within an evolutionarily conservative preference hierarchy.  相似文献   

6.
Experiments designed to reveal variation among individual parasites in preference for different host species may generate misleading results. Apparent variation in the order of preference among host species can be generated solely from variation in the strength of discriminations made within host species. We illustrate this with a study of oviposition preference in the butterfly Melitaea cinxia. All butterflies were tested on the same six individual plants, three Plantago lanceolata (P) and three Veronica spicata (V). Some insects repeatedly preferred all individual P over all individual V or vice versa. We designated these as "pure" species ranks. Other insects repeatedly produced "mixed" ranks, preferring some individual V over some P, and some individual P over some V. We show how a "mixed" rank butterfly could differ from a "pure" rank insect by discriminating either more within plant species and/or less between them. Therefore, discrimination within host species can mask or confound discrimination among species. We discuss implications for the design of preference experiments.  相似文献   

7.
Abstract.  1. Choosing the plant on which to lay their eggs is the last act of care that most female herbivorous insects bestow upon their offspring. These decisions play a pivotal role in insect–plant interactions, placing host preference under strong selection and contributing to the diversity of phytophagous insects as one of the first traits to adapt to new hosts.
2. This study presents a test of whether extreme isolation and exposure to different host plants can produce intra-specific divergence in oviposition preference in alpine insects. Geographic variation should impose selection to fine-tune host plant ranking and specificity to the plants normally encountered, to avoid wasting time during the very limited reproductive season experienced at high altitudes.
3. Beetles from five populations of Oreina elongata differing in host availability were offered three natural hosts: Cirsium spinosissimum , Adenostyles alliariae , and Adenostyles glabra . A novel application of a continuation ratio model (logistic regression) was made to sequential no-choice experiments, combined with quasi-likelihood analysis of multiple-choice experiments.
4. The results show little geographic variation in host plant choice: all populations strongly preferred Cirsium in multiple-choice trials, and in no-choice experiments laid around 47% of their remaining eggs during each stage, almost regardless of the host present.
5. Enemy-free space seems to explain the preference for Cirsium , but isolation and exposure to different plants has clearly not caused local adaptation in host plant ranking or specificity. Reasons for this conservatism despite divergence in other characteristics are discussed.  相似文献   

8.
Monarch butterflies, Danaus plexippus L. (Lepidoptera: Nymphalidae), occur world‐wide and are specialist herbivores of plants in the milkweed family (Asclepiadaceae). In North America, two monarch populations breed east and west of the continental divide in areas populated by different host plant species. To examine the population variation in monarch responses to different Asclepias species, we measured oviposition preference and larval performance among captive progeny reared from adult butterflies collected in eastern and western North America. Host plant use was evaluated using two milkweed species widely distributed in eastern North America (A. incarnata and A. syriaca), and two species common to western North America (A. fascicularis and A. speciosa). We predicted that exposure to different host plant species in their respective breeding ranges could select for divergent host use traits, so that monarchs should preferentially lay more eggs on, and larvae should perform better on, milkweed species common to their native habitats. Results showed that across all adult female butterflies, oviposition preferences were highest for A. incarnata and lowest for A. fascicularis, but mean preferences did not differ significantly between eastern and western monarch populations. Larvae from both populations experienced the highest survival and growth rates on A. incarnata and A. fascicularis, and we again found no significant interactions between monarch source population and milkweed species. Moreover, the average rank order of larval performance did not correspond directly to mean female oviposition preferences, suggesting that additional factors beyond larval performance influence monarch oviposition behavior. Finally, significant family level variation was observed for both preference and performance responses within populations, suggesting an underlying genetic variation or maternal effects governing these traits.  相似文献   

9.
Much of the world's biodiversity has resulted from specialization of insect populations onto different plant species, partially through evolution of preference in ovipositing females. Here I report an experimental analysis of how an oviposition preference hierarchy has evolved during the evolutionary diversification of an insect group to produce taxa ranging from monophagous to polyphagous. Tests on the Papilio machaon group of swallowtail butterflies show that the preference hierarchy for plant species is evolutionarily dynamic within this species complex, yet constrained among most populations within species, creating a geographic mosaic of populations differing to various degrees in patterns of host preference. The results indicate that different diet breadths can evolve within a group of closely-related species through a combination of conservatism in preference hierarchy among some populations, occasional but rare rearrangements in preference among others, correlations in preference for some plant species, and availability of similarly ranked hosts.  相似文献   

10.
We analyzed geographic differentiation in oviposition preference in the anise swallowtail butterfly, Papilio zelicaon Lucas, which is one of the most widely distributed and polyphagous butterflies in western North America. Among 13 populations that span 1200 km of the range of P. zelicaon in the Pacific Northwest of North America, the overall oviposition preference hierarchy has not diverged significantly, even though these populations differ in the plant species they use in the field. The results indicate that differences in host availability and use have not favored major reorganizations in the preference hierarchy of ovipositing females. Instead, this butterfly has a conserved preference hierarchy that varies within a narrow range among populations. All populations ranked the four test plant species in the same overall relative order, even though these populations differ in the plant species they use in the field. Received: 9 February 1996 / Accepted: 24 February 1997  相似文献   

11.
The genetic and ecological factors that shape the evolution of animal diets remain poorly understood. For herbivorous insects, the expectation has been that trade‐offs exist, such that adaptation to one host plant reduces performance on other potential hosts. We investigated the genetic architecture of alternative host use by rearing individual Lycaeides melissa butterflies from two wild populations in a crossed design on two hosts (one native and one introduced) and analysing the genetic basis of differences in performance using genomic approaches. Survival during the experiment was highest when butterfly larvae were reared on their natal host plant, consistent with local adaptation. However, cross‐host correlations in performance among families (within populations) were not different from zero. We found that L. melissa populations possess genetic variation for larval performance and variation in performance had a polygenic basis. We documented very few genetic variants with trade‐offs that would inherently constrain diet breadth by preventing the optimization of performance across hosts. Instead, most genetic variants that affected performance on one host had little to no effect on the other host. In total, these results suggest that genetic trade‐offs are not the primary cause of dietary specialization in L. melissa butterflies.  相似文献   

12.
Searching for resources is often a challenging task, especially for small organisms such as insects. Complex stimuli have to be extracted from the environment and translated into a relevant behavioral output. A first step in this process is to investigate the relative roles of the different senses during search for various resources. While the role of olfaction is well documented in nocturnal moths, the olfactory abilities of the closely related diurnal butterflies are poorly explored. Here we investigated how olfactory information is used in the search for host plants and asked if these abilities varied with levels of stimulus complexity. Thus, we tested two nymphalid butterfly species with divergent host plant range in a two-choice olfactometer testing different combinations of host and non-host plants. The experiments show both the monophagous Aglais urticae and the polyphagous Polygonia c-album could navigate towards an odor source, but this ability varied with context. While mated females exhibited a preference for their host plant, unmated females of both species did not show a preference for host plant cues. Furthermore, both species showed inabilities to make fine-tuned decisions between hosts. We conclude that olfactory cues are important for butterflies to navigate towards targets. We argue that there are limitations on how much information can be extracted from host volatiles. These results are discussed in the light of neural processing limitations and degree of host plant specialization, suggesting the necessity of other sensory modalities to sharpen the decision process and facilitate the final oviposition event.  相似文献   

13.
The consequences of the introduction of invasive plants for the diet of herbivorous insects have been little explored in nature where, potentially, abiotic and biotic factors operate. In this study, we examined the larval performance of two Neotropical Danaini butterflies when using either a native or an exotic Apocynaceae species as host plant in both field and laboratory experiments. Hosts greatly differ in their amount of latex exudation and other physicochemical traits, as well as in the amount of evolutionary time they have interacted with herbivores. First, herbivore performance on the hosts was investigated under laboratory conditions. Larvae of both Danaini species took more time to develop on the exotic host; larval survivorship did not vary between hosts. Second, first instar survivorship on both hosts was evaluated in two field sites, one site per host. To do so, in both sites half of the larvae were bagged (protected against both abiotic and biotic factors) while the remainder were nonbagged (exposed). The interaction between larval exposure with the use of the exotic host reduced larval survival. We concluded that the combined effects of host plant traits and abiotic factors reduced survival of herbivores in field conditions. Therefore, the performance of herbivores when using hosts of different origins should be considered together with the multiple ecological factors found in natural environments, as these factors can modify the result of plant–herbivore interactions.  相似文献   

14.
Abstract 1. In 2004, Brood X of the periodical cicada (Magicicada spp.) emerged in Delaware. Extensive suburban development and concomitant planting of exotic species has occurred since the previous emergence of Brood X in 1987. 2. Exotic species could suffer extensive damage during years of cicada emergences if they are preferred for oviposition. Alternately, a shortage of suitable plant hosts may negatively affect remaining cicada populations. 3. We determined if the periodical cicada, Magicicada septendecim, preferred to oviposit on native or exotic woody plant species. Potential hosts were divided into three groups and planted in a randomised design near a likely source of cicadas. The first group, Natives, included 15 species native to Delaware. The second group, Non‐natives, included 15 exotic species that had a native congener represented in the Native group. The final group, Aliens, included 13 exotic species that did not have a native congener. 4. Based on observations of 428 plants, cicadas were more likely to oviposit on Natives or Non‐natives, which did not differ from each other in this measure, than on Aliens. Non‐natives had more oviposition holes per metre than Natives, which had more holes per metre than Aliens. The likelihood of stem flagging was lowest on Alien species; the percentage of the total plant that flagged was greatest for Natives. Plant morphology also influenced host preference and likelihood of flagging. 5. Taking plant morphology into consideration, we speculate that the evolutionary history between periodical cicadas and potential hosts is an important component of host preference.  相似文献   

15.
The aim of this study was to investigate the preference of a leaf beetle to different Salix clones, and to relate this preference to plant chemistry. The preference of Gonioctena linnaeana Schrank (Coleoptera: Chrysomelidae) was tested in cafeteria experiments using its host Salix triandra L. (Salicaeae) from three Swedish isolated populations and one Russian population from the main distribution range of the host. The leaves from the different host clones were used to analyse the content of phenolic glucosides and the amount of condensed tannins. The larvae did not show any feeding preferences for host clones from the population they originated from, but all Swedish host populations were preferred over the Russian host population. This suggests a preference for regional hosts. We analyzed whether leaf chemistry parameters may explain host plant preferences. Chemical analysis of the leaves showed that the quantities, but not the quality, of the phenolic compounds differed between populations. A Principal Component Analysis of the chemical data also highlighted a difference between the Swedish and Russian host plant populations. The two most important compounds separating Russian from Swedish clones were gallocatechin and salidroside. However, the difference in preference could also be a result of, for example, nutritional quality, water content, or leaf texture. The relative importance of these different factors should be evaluated in future experiments.  相似文献   

16.
Abstract.— Coevolution may lead to local adaptation of parasites to their sympatric hosts. Locally adapted parasites are, on average, more infectious to sympatric hosts than to allopatric hosts of the same species or their fitness on the sympatric hosts is superior to that on allopatric hosts. We tested local adaptation of a hemiparasitic plant, Rhinanthus serotinus (Scrophulariaceae), to its host plant, the grass Agrostis capillaris . Using a reciprocal cross-infection experiment, we exposed host plants from four sites to hemiparasites originating from the same four sites in a common environment. The parasites were equally able to establish haustorial connections to sympatric and allopatric hosts, and their performance was similar on both host types. Therefore, these results do not indicate local adaptation of the parasites to their sympatric hosts. However, the parasite populations differed in average biomass and number of flowers per plant and in their effect on host biomass. These results indicate that the virulence of the parasite varied among populations, suggesting genetic variation. Theoretical models suggest that local adaptation is likely to be detected if the host and the parasite have different evolutionary potentials, different migration rates, and the parasite is highly virulent. In the interaction between R. serotinus and A. capillaris all the theoretical prerequisites for local adaptation may not be fulfilled.  相似文献   

17.
Many phytophagous insects have strong preferences for their host plants, which they recognize via odors, making it unclear how novel host preferences develop in the course of insect diversification. Insects may learn to prefer new host plants via exposure to their odors and pass this learned preference to their offspring. We tested this hypothesis by examining larval odor preferences before and after feeding them with leaves coated with control and novel odors and by examining odor preferences again in their offspring. Larvae of the parental generation developed a preference for two of these odors over their development. These odor preferences were also transmitted to the next generation. Offspring of butterflies fed on these new odors chose these odors more often than offspring of butterflies fed on control leaves. In addition, offspring of butterflies fed on banana odors had a significant naïve preference for the banana odors in contrast to the naïve preference for control leaves shown by individuals of the parental generation. Thus, butterflies can learn to prefer novel host plant odors via exposure to them during larval development and transmit these learned preferences to their offspring. This ability potentially facilitates shifts in host plant use over the course of insect diversification.  相似文献   

18.
Arms races between avian brood parasites and their hosts often result in parasitic mimicry of host eggs, to evade rejection. Once egg mimicry has evolved, host defences could escalate in two ways: (i) hosts could improve their level of egg discrimination; and (ii) negative frequency-dependent selection could generate increased variation in egg appearance (polymorphism) among individuals. Proficiency in one defence might reduce selection on the other, while a combination of the two should enable successful rejection of parasitic eggs. We compared three highly variable host species of the Afrotropical cuckoo finch Anomalospiza imberbis, using egg rejection experiments and modelling of avian colour and pattern vision. We show that each differed in their level of polymorphism, in the visual cues they used to reject foreign eggs, and in their degree of discrimination. The most polymorphic host had the crudest discrimination, whereas the least polymorphic was most discriminating. The third species, not currently parasitized, was intermediate for both defences. A model simulating parasitic laying and host rejection behaviour based on the field experiments showed that the two host strategies result in approximately the same fitness advantage to hosts. Thus, neither strategy is superior, but rather they reflect alternative potential evolutionary trajectories.  相似文献   

19.
In herbivorous insects, the interaction between adult preference and progeny performance on specific host plants is modified by maternal feeding experience and host plant quality. Ultimately, changes in the strength of this interaction can affect insect population dynamics. In this study, we hypothesized that adult host plant preference influences progeny performance through a maternal feeding experience × host plant interaction, that is, the effect of adult feeding experience on progeny performance will depend on the host plant. Second, that decoupling of the preference–performance relationship due to host switching results in different population vital rates changing population dynamics. An increase in development time and a decrease in body size of individuals in the alternate host should decrease population growth. We tested these hypotheses using two lines of the tortoise beetle Chelymorpha varians Blanchard fed with two hosts (Convolvulus arvensis and Calystegia sepium). Maternal feeding experience treatments were crossed with host plant species, and the offspring’s developing time and adult size were measured. The host plant influence on the beetle’s population vital rates was tested using stage-structured matrix population models and life table response experiments. Host plant preference affected offspring body size through a host plant effect that contributed to adaptive life history responses only in the better quality host. C. varians’ population growth was positive when fed with either host; comparatively, however, C. sepium had a negative effect on growth by reducing all transition probabilities of the life cycle stages of the beetle. Here, we show that individuals of C. varians prefer and perform differently on distinct hosts and that these patterns influence population vital rates in different ways. When beetles prefer the host plant where their progeny performs best, life history responses and life stage transitions lead to higher population growth; otherwise, growth rate decreases.  相似文献   

20.
Animals often express behavioral preferences for different types of food or other resources, and these preferences can evolve or shift following association with novel food types. Shifts in preference can involve at least two phenomena: a change in rank preference or a change in specificity. The former corresponds to a change in the order in which hosts are preferred, while a shift in specificity can be an increase in the tendency to utilize multiple hosts. These possibilities have been examined in relatively few systems that include extensive population-level replication. The Melissa blue butterfly, Lycaeides melissa, has colonized exotic alfalfa, Medicago sativa, throughout western North America. We assayed the host preferences of 229 females from ten populations associated with novel and native hosts. In four out of five native-associated populations, a native host was preferred over the exotic host, while preference for a native host characterized only two out of five of the alfalfa-associated populations. Across all individuals from alfalfa-associated populations, there appears to have been a decrease in specificity: females from these populations lay fewer eggs on the native host and more eggs on the exotic relative to females from native-host populations. However, females from alfalfa-associated populations did not lay more eggs on a third plant species, which suggests that preferences for specific hosts in this system can potentially be gained and lost independently. Geographic variation in oviposition preference in L. melissa highlights the value of surveying a large number of populations when studying the evolution of a complex behavioral trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号