首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
HUNT  E. R.  JR; JAFFE  M. J. 《Annals of botany》1980,45(6):665-672
Field and laboratory experiments were performed to determinethe interaction of wind and temperature on thigmomorphogenesis(defined here as decreased elongation and increased internodalradial enlargement due to mechanical perturbation). Kidney beanplants (Phaseolus vulgaris L. cv. Red Cherokee Wax) were shelteredor exposed to wind for 10 days. Wind velocity, wind gusting,temperature, light and rainfall were measured for the durationof each of ten experiments. Stem elongation and diameter weremeasured and it was found that thigmomorphogenesis due to windoccurs naturally. There was more internodal secondary xylemproduced in the wind-exposed plants than in the sheltered plants.The experimental data were analyzed by multiple linear regressionand the wind was found to be a significant factor in the predictionof bean stem elongation and thickening. Laboratory experimentsshow that as wind velocity increases, thigmomorphogenesis increasesin an approximate linear fashion. Furthermore, it was foundthat low temperatures interact with mechanical perturbationto reduce the amount of thigmomorphogenesis, both in the fielddue to wind and in the laboratory due to rubbing. Other environmentalfactors do not seem to interact with the wind to modulate thigmomorphogenesiseven though these factors affect plant growth. Phaseolus vulgaris L., kidney bean, thigmomorphogenesis, wind, temperature, ethylene, multiple linear regression  相似文献   

2.
Bean plants (Phaseolus vulgarisL. ‘Zlota Saxa’)were cultured on complete (+P) or phosphate-deficient (-P) nutrientmedium. A large increase in glucose concentration was foundin the meristematic zone of -P roots compared to control roots.The increased glucose concentration in the meristematic zonedid not influence total respiration rate. Glucose or uncoupler(carbonyl cyanide m-chlorophenylhydrazone) failed to increasethe respiration rate in -P root segments, but stimulated respirationin +P roots. The ultrastructure of cortical cells from the meristematicroot zone showed marked differences between +P and -P plants.Large vacuoles, invaginations of the plasmalemma and condensedforms of mitochondria were dominating features in cortical cellsof -P roots. Analysis of extracts after treating roots withdimethylsulfoxide (DMSO) indicated different localization ofsugars in the cell compartments. In roots of -P plants, mostof the reducing sugars were detected in the cytoplasm fractionwhile most sucrose was in the vacuole. Observations of the effectof 10% DMSO on cell ultrastructure indicated partial destructionof the plasmalemma but not the tonoplast. The localization ofreducing sugars in secondary vacuoles or plasmalemma invaginationsin the cells from the meristematic region of -P roots is discussed.Copyright1998 Annals of Botany Company. Bean (Phaseolus vulgarisL.), roots, Pi deficiency, respiration, meristematic zone, ultrastructure, sugar efflux, reducing sugars and sucrose localization.  相似文献   

3.
Phaseolus vulgaris L. decapitated at the third internode showedaccelerated growth of the uppermost axillary bud remaining onthe stem (the first trifoliate axillary bud) after a lag periodof 3–5 h Much of the initial growth increment could beattributed to cell expansion Phaseolus vulgaris L, dwarf bean, correlative inhibition, cell expansion  相似文献   

4.
Lateral root primordium development has been examined in primaryroots of Vicia faba L., Pisum sativum L., Zea mays L. and Phaseolusvulgaris L. Following their initiation from an estimated minimumnumber of 77–162, 20–57, 17 and 12 cells respectivelyin Vicia, Phaseolus, Pisum and Zea, the primordia rapidly increasedin cell number to emerge as secondary roots about 2.8–3.6days later depending on the species being examined. Cell doublingtimes were estimated directly from cell numbers at differenttimes following primordium inception and were found to increasewith increase in primordium size in each of the species investigated. The number of primordia formed per cm of root growth per daywas greatest in Zea and least in Pisum. A comparison of thedata obtained for Vicia with that in the literature led to theconclusion that although the number of primordia produced percm of root growth was independent of the rate of primary elongation,the number produced per day increased in a linear fashion withincrease in the rate at which the primary lengthened. Vicia faba L, Pisum sativum L, Zea mays L, Phaseolus vulgaris L, broad bean, garden pea, maize, dwarf bean, root primordia, cell division, cell doubling time  相似文献   

5.
Mechanical perturbation of bean (Phaseolus vulgaris L.) internodes results in reduced elongation and increased diameter of the internodes (thigmomorphogenesis). Perturbation of a single lower internode results in thigmorphogenesis in that internode and all of those internodes above it, the degree of which depends on the age (size) of the internodes and the frequency of perturbation. Application of ethephon to the internodes mimics mechanical perturbation. Early removal of the shoot tip or the cotyledons does not effect thigmomorphogenesis, indicating that those organs do not exert control over the response. Mechanical perturbation of one plant of a pair grafted together at the first internodes results in thigmomorphogenesis in both plants. This indicates the transport of some factor from the mechanically perturbed donor to the non-treated receiver. Evidence is presented to support the contention that ethylene is not this transportable factor.  相似文献   

6.
Root pruning increased the level of ethanol soluble sugars inred kidney bean plants (Phaseolus vulgaris L. ) grown in aeratednutrient solution. However, the concentration gradient of thesesugars down the stem and its translocation velocity remainedunchanged. Removal of 50% of the roots had no effect on thetotal photosynthates exported from source leaves but the finaldistribution pattern of photosynthates was altered; less movingtoward the upper plant parts, and accumulation occurring inthe lower stems. Translocation velocity of photosynthates towardthe upper plant parts was drastically reduced by root pruning. Key words: Phaseolus vulgaris, Photosynthate translocation, Root pruning  相似文献   

7.
Plasmolytic disruption of plasmodesmata interconnecting metaphloemsieve element-companion cell complexes with small and largephloem parenchyma cells in the elongating region of internode2 ofPhaseolus vulgarisL. seedlings did not affect accumulationof phloem-imported14C-photosynthates and86rubidium. The membrane-impermeantdye, 5(6) carboxyfluorescein, loaded into leaf phloem as themembrane-permeant diacetate ester, was found not to move radiallyout of the importing sieve elements in the internode elongationregion. In contrast, the apoplasmic tracer, Calcuofluor White,rapidly moved laterally throughout all tissues of the elongationzone. Hexoses, sucrose and potassium were identified as themain osmotica in internode apoplasmic sap. Label asymmetry in[14C](fructosyl)sucrose was retained on accumulation by excisedstem segments. Uptake of [14C]sucrose and86rubidium by stemsegments exhibited saturation kinetics. Sucrose uptake was inhibitedby the slowly penetrating sulphydryl reagent, para-chloromercuribenzenesulphonicacid.In vitrorates of sucrose uptake, at apoplasmic concentrations,corresponded to its predictedin vivorate of delivery to thestem ground tissues from mature sieve elements when respiratorylosses were assumed to be confined to the stem phloem. For potassium,the total delivery rate could be accounted for by itsin vitrorateof uptake. Overall, it was concluded that radial transport,in the elongation zone of internode 2 ofPhaseolus vulgarisL.seedlings, follows an apoplasmic route from mature sieve elementsto stem ground tissues.Copyright 1998 Annals of Botany Company PhaseoluLes vulgaris, apoplasm, elongating stem, French bean, photosynthates, potassium, radial transfer, symplasm.  相似文献   

8.
The potential cellular pathway of radial transfer of photosynthateand potassium delivered in the phloem to the elongation zone(apical 0.5–2.5 cm) of internode 2 ofPhaseolus vulgarisL. seedlings was elucidated. This was achieved using ultrastructuralobservations of the cell types that constitute the radial pathwayand estimates of potential sucrose and potassium fluxes throughthe cross-sectional area of interconnecting plasmodesmata andacross the plasma membrane surface areas of selected cell types.The investigation relied on predicting the relative roles ofthe mature and developing sieve elements as conduits for theaxial delivery of solutes to the elongation zone. In turn, thesepredictions led to formulation of two transport models whichwere subsequently evaluated. It was found that unloading ofsucrose and potassium from the protophloem sieve elements cannotbe through the symplast due to the absence of plasmodesmata.On the other hand, mature metaphloem sieve element-companioncell complexes have the potential capacity to unload eitherthrough the stem symplast or apoplast. The potential symplasticroute is proposed to be via the companion cells to the adjacentlarge phloem parenchyma cells. Continued radial transfer couldoccur either by exchange to the stem apoplast from the largephloem parenchyma cells or continue in the symplast to the groundtissues. It was further predicted that sucrose utilized forthe development of the procambial/small phloem parenchyma cellscould be delivered axially by them and not by the mature sieveelements. Phaseolus vulgaris ; apoplast; elongating stem; photosynthates; potassium; transport; symplast  相似文献   

9.
In the stem of Phaseolus vulgaris L. the specific activity ofacid invertase was highest in the most rapidly elongating internode.Activity of the enzyme was very low in internodes which hadcompleted their elongation, in young internodes before the onsetof rapid elongation, and in the apical bud. From shortly afterits emergence from the apical bud the elongation of internode3 was attributable mainly to cell expansion. Total and specificactivities of acid invertase in this internode rose to a maximumat the time of most rapid elongation and then declined. Transferof plants to complete darkness, or treatment of plants withgibberellic acid (GA3), increased the rate of internode elongationand final internode length by stimulating cell expansion. Bothtreatments rapidly increased the total and specific activitiesof acid invertase in the responding internodes; peak activitiesof the enzyme occurred at the time of most rapid cell expansion. In light-grown plants, including those treated with GA3, rapidcell and internode elongation and high specific activities ofacid invertase were associated with high concentrations of hexosesugar and low concentrations of sucrose. As cell growth ratesand invertase activities declined, the concentration of hexosefell and that of sucrose rose. In plants transferred to darkness,stimulated cell elongation was accompanied by a rapid decreasein hexose concentration and the disappearance of sucrose, indicatingrapid utilization of hexose. No sucrose was detected in theapical tissues of light-grown plants. The results are discussed in relation to the role of acid invertasein the provision of carbon substrates for cell growth. Key words: Cell expansion, Acid invertase, Hexose, Sucrose, Phaseolus  相似文献   

10.
Sodium Recirculation and Loss from Phaseolus vulgaris L.   总被引:3,自引:0,他引:3  
JACOBY  B. 《Annals of botany》1979,43(6):741-744
In a split-root experiment, 22Na was supplied to Phaseolus vulgarisL. roots emerging from the stem, 2.5 cm above the main roots.Sodium exported from these upper roots was translocated a shortdistance upward in the stem and downward to the main roots.Most of the 22Na arriving in the main roots was lost to themedium. Sodium loss from P. vulgaris roots into KCI or NaCl was similarand was not affected by oligomycin. The results confirm a previous hypothesis regarding the mechanismof sodium exclusion from the tops of sodium non-accumulatorplants. Phaseolus vulgaris L., bean, sodium transport  相似文献   

11.
FASSEAS  C.; BOWES  B. G. 《Annals of botany》1980,46(2):143-152
Explants of mature cotyledons of Phaseolus vulgaris form callusrapidly when cultured in vitro with their adaxial surfaces embeddedin a solidified nutrient medium containing coconut milk, kinetinand 2,4-D. Proliferation is confined to the highly polyploidstorage cells and commences near the adaxial epidermis, whichis soon ruptured by the callus developing internally. Callusformation progresses to the abaxial tissue and within 3–4weeks sub-culturing is possible. The in vitro grown storage cells undergo thinning of their walls,loss of food reserves, hypertrophy, development of various new-wallsand nuclear activation leading to division. The induction ofnuclear and cell divisions within this mature storage tissuecontrasts with normal germination in which these cells undergorapid senescence after depletion of their food reserves. Nuclear division in early callus growth is apparently mainlyamitotic. It is preceded by the development of multiple nucleoli.The nuclear envelope also becomes more complex and deeply lobed;leading to formation of a nuclear isthmus and final separationinto two nuclei. No chromosomes are visible during nuclear fragmentation.Amitosis is accompanied by freely-forming walls, which may developadjacent to a nuclear isthmus and perhaps participate in nuclearfragmentation. Large labyrinthine wall bodies frequently occuron these walls. Mitoses are only observed in already dividedstorage cells. A cell plate forms between the two daughter nuclei,and microtubules are present at its margins in contrast to freely-formingwalls where none are evident. Phaseolus vulgaris L., bean, in-vitro culture, cotyledon, ultrastructure  相似文献   

12.
Wheat leaves (Triticum aestivum L.) elongated 50% more slowlywhen plants were grown in soils with high mechanical resistanceto penetration (Rs. The profiles of epidermal cell lengths alongthe growth zone of expanding leaves and the locations of newlyformed walls were recorded in order to compare the kineticsof elongation and partitioning of both meristematic and non-meristematiccells. In leaf 5, which completely developed under stress, highRs, did not affect the flux of mature cells through the elongationzone; leaf elongation was reduced only because these cells wereshorter. This reduced size reflected a reduction in cell lengthat partitioning, associated with shorter cycling time. The relativerates of cell elongation before and after partitioning wereunchanged. Cell fluxes were similar because the population ofmeristematic cells was reduced, offsetting their increased partitioningrate. In contrast, in leaf 1, high Rs, had no effect on thenumber of dividing cells; elongation rate was reduced becauseof slower relative cell expansion rate and slower cell partitioningrate. These differences could reflect differences in the stageat which successive leaves perceived root stress and also time-dependentchanges in the responsiveness of leaf development to stress-inducedroot signals or in the nature of these signals. The data reveal that cell cycling time may in fact be decreasedby unfavourable growth conditions and is not directly relatedto cell expansion rates; they also show that the elongationrate of meristematic cells is partly independently controlledfrom that of non-meristematic cells. Key words: Wheat, kinematics of leaf expansion, cell partitioning, cell elongation, root impedance  相似文献   

13.
KOSHKIN  E. I. 《Annals of botany》1990,65(6):581-584
Bean (Phaseolus vulgaris L.) plants were grown, one to fiveplants per pot, with a non-limiting supply of mineral nutrients.As plant density increased, seed and N yield per plant decreased,but those per pot remained fairly constant. The shoot: rootratio and the contribution of roots to total plant respirationwere also almost constant with changing density; the Q10 forshoot respiration was higher at maximal densities. However,growth respiratory C losses per plant over the growth periodon a seed dry matter of N yield basis were not dependent onplant densities tested. Phaseolus vulgaris L., yield, respiration, plant density  相似文献   

14.
Localization of purple acid phosphatase (PAP) from the seedsof kidney beans,Phaseolus vulgaris(L.), was performed usinglight and transmission electron microscopy. After rehydrationand aqueous fixation, cryo-sections of bean cotyledon tissueshowed a bright immunofluorescent signal in the cytoplasm ofcells whereas cell walls and reserve materials (starch, proteinbodies) remained unstained. In ultrathin sections of dry cotyledontissue anhydrously fixed in acrolein vapour and embedded inLowicryl resin, PAP mapped exclusively to ribosome-rich areasof the cytoplasm. In view of these results, we propose thatkidney bean PAP might possibly be engaged in mechanisms involvedin the triggering of seed dormancy.Copyright 1998 Annals ofBotany Company Phaseolus vulgaris(L.), kidney bean, purple acid phosphatase, immunofluorescence microscopy, immunogold electron microscopy, anhydrous vapour fixation, acrolein.  相似文献   

15.
Excised embryos of Phaseolus vulgaris incubated in a mediumcontaining 10 mg dm–3 farnesol showed enhanced root growthwhereas the leaves remained rudimentary At lower concentrationsof exogenous farnesol normal leaf development occurred and rootgrowth was comparable to untreated cultures. Enhanced root growthalso occurred when excised embryos of Hordeum vulgare were treatedwith farnesol but only at 10 mg dm–3 and this treatmentdid not prevent leaf growth X-ray micro-probe analysis of leavesrevealed an increased phosphorus content in P vulgaris and adecreased sulphur content in H vulgare in comparison to untreatedplants. Hordeum vulgare L., barley, Phaseolus vulgaris, bean, embryo culture, farnesol, X-ray microprobe analysis, root growth  相似文献   

16.
The cells responsible for the photosynthate efflux from coatsof developing seed of Vicia faba L. and Phaseolus vulgaris L.were elucidated using known properties of the efflux mechanism.Sensitivity of sucrose efflux to NEM and high potassium concentrationswas retained by seed-coat halves of Phaseolus following pectinaseremoval of the branch parenchyma cell layer. In contrast, removalof the thin-walled parenchyma transfer cell layer from Viciaseed-coat halves abolished this sensitivity. The membrane-impermeantthiol-binding fluorochrome, qBBr, selectively stained the surfaceof the thin-walled parenchyma transfer cells. This phenomenonwas inhibited by the slowly permeable sul-phydryl agent, PCMBS,indicating that the plasma membranes of these cells are enrichedin sulphydryl groups characteristic of membrance porter proteins.On the basis that carrier-mediated sucrose efflux from seedcoats appears to be proton coupled, the putative plasma membraneH+-ATPase was used as a marker for the cells responsible forcarrier-mediated photosynthate efflux. When seed-coat halveswere exposed briefly at pH 8.5 to the weak acid fluorochrome,SRG, the ground parenchyma and thin-walled parenchyma transfercell layers selectively accumulated the dye. The apparent lowpH environment in the walls of these cells that renders SRGmembrane permeant appeared to be maintained by a VAN-sensitiveproton pump. The findings with SRG were corroborated by thecyto-chemical localization of plasma membrane ATPase activityto the ground parenchyma and thin-walled parenchyma transfercells using precipitation of cerium phosphate. Together, ourobservations provide qualified support for the conclusion thatcarrier-mediated photosynthate efflux from coats of Phaseolusand Vicia seed is primarily restricted to the ground parenchymaand thin-walled parenchyma transfer cell layers, respectively. Key words: Ground parenchyma, Phaseolus vulgaris L., photosynthate efflux, seed coat, transfer cell, Vicia faba L.  相似文献   

17.
Based on an uniform elongation growth pattern and cellular structure,the apical 0·5-2·5 cm elongation zone of internode2 of Phaseolus vulgaris L. seedlings was selected as an experimentalsystem to study the radial pathway of photosynthate and potassiumtransfer from the phloem. An histological examination of thephloem within the elongation zone of internode 2 showed thatboth proto- and meta- phloem sieve elements were present. Theformer were fully differentiated at the commencement of elongationand became crushed as elongation proceeded. In contrast, about50% of the final number of metaphloem sieve element-companioncell complexes differentiated during the same period. The phloemdelivered some 99% of the sucrose and 72-82% of the potassiumaccumulated by the elongation zone. Solute budgets showed that,of the photosynthates and potassium entering the elongationzone, approximately 40% were retained and 60% transferred tothe shoot apex. Thus, the elongating stem acts not only as asignificant sink for photosynthates and potassium, but alsoas an axial phloem transport system to supply the shoot apex.Within the elongation zone, the principal tissue sinks weredetermined by the cellular localisation of [14C] photosynthatesand potassium by microautoradiography and ion electron microprobeanalysis respectively. About 80% of the photosynthates and potassiumwere located outside the phloem. The cortex and pith exhibitedthe greatest accumulation for photosynthates and the pith forpotassium.Copyright 1994, 1999 Academic Press Phaseolus vulgaris, elongating stem, French bean, photosynthates, potassium, radial transfer, stem anatomy, transport  相似文献   

18.
When bean plants (Phaseolus vulgaris L. cv. Red Cherokee Bush) are mechanically perturbed by rubbing, their stem elongation is inhibited and the stem thickness increases. The decrease in cell elongation and the increase in lateral cell divisions, which are partially responsible for this syndrome, were correlated with a decrease in the tree fatty acids and in the phospholipids of the membranes of microsomal fractions of first and second internodes of mechanically stimulated plants. This was true even though only the first internode was mechanically stimulated. Of the microsomal free fatty acids, mechanical perturbation induced an increase in myristic acid and large decreases in stearic, oleic, linoleic and linolenic acids. It also reduced the unsaturated:saturated ratio of the fatty acids. It induced a decrease in phosphatidyl choline but an increase in phosphatidyl ethanolamine. When the fatty acids were cleaved from the microsomal phospholipids, mechanical perturbation caused only a slight decrease in the unsaturated:saturated ratio and no significant changes in the double bond index. Mechanical perturbation induced an increase in the total microsomal protein and of membrane-associated latent IDPase. However, the activity of membrane-associated KCN-insensitive NADPH cytochrome-c reductase was decreased by mechanical perturbation. Treatment of the first internode with exogenous Ethrel produced results that were very similar in all respects to those obtained by mechanical perturbation. The factors inducing hardening against frost and drought, as achieved by mechanical perturbation and Ethrel treatment, are not only related to sterols or the polar head-groups of phospholipids but may also be related to the protein components, and all may have an effect on the fluidity of a bilayer membrane model. These data support the hypothesis that ethylene mediates thigmomorphogenesis and that mechanical perturbation of the first internode results in the acropetal transport of a translocatable thigmomorphogenetic factor.  相似文献   

19.
A series of 13-hydroxygibberellins, gibberellin A1 (GA1), GA19,GA20, GA44 and GA53, were identified by GC/MS (full scan) fromvegetative shoots of tall (cv. Kentucky Wonder) and dwarf (cv.Masterpiece) Phaseolus vulgaris L. It is suggested that GA1is active per se in the control of shoot elongation of P. vulgarisL., and that dwarfism in Masterpiece is not due to shortageof the active GA, but to its low ability to respond to the bioactiveGA. (Received August 29, 1988; Accepted November 21, 1988)  相似文献   

20.
The effect of exposure to elevated CO2 on the processes of leafcell production and leaf cell expansion was studied using primaryleaves of Phaseolus vulgaris L. Cell division and expansionwere separated temporally by exposing seedlings to dim red lightfor 10 d (when leaf cell division was completed) followed byexposure to bright white light for 14 d (when leaf growth wasentirely dependent on cell expansion). When plants were exposedto elevated CO2 during the phase of cell expansion, epidermalcell size and leaf area development were stimulated. Three piecesof evidence suggest that this occurred as a result of increasedcell wall loosening and extensibility, (i) cell wall extensibility(WEx, measured as tensiometric extension using an Instron) wassignificantly increased, (ii) cell wall yield turgor (V, MPa)was reduced and (iii) xyloglucan endotransglycosylase (XET)enzyme activity was significantly increased. When plants wereexposed to elevated CO2 during the phase of cell division, thenumber of epidermal cells was increased whilst final cell sizewas significantly reduced and this was associated with reducedfinal leaf area, WEx and XET activity. When plants were exposedto elevated CO2 during both phases of cell division and expansion,leaf area development was not affected. For this treatment,however, the number of epidermal cells was increased, but cellexpansion was inhibited, despite exposure to elevated CO2 duringthe expansion phase. Assessments were also made of the spatialpatterns of WEx across the expanding leaf lamina and the datasuggest that exposure to elevated CO2 during the phase of leafexpansion may lead to enhanced extensibility particularly atbasal leaf margins which may result in altered leaf shape. The data show that both cell production and expansion were stimulatedby elevated CO2, but that leaf growth was only enhanced by exposureto elevated CO2 in the cell expansion phase of leaf development.Increased leaf cell expansion is, therefore, an important mechanismfor enhanced leaf growth in elevated CO2, whilst the importanceof increased leaf cell production in elevated CO2 remains tobe elucidated. Key words: Phaseolus vulgaris L., dwarf beans, elevated CO2, biophysics of cell expansion, xyloglucan endotransglycosylase, XET, water relations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号