首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Phaseolus multiflorus plants at three stages of developmentwere decapitated either immediately below the apical bud orlower down at a point 1 cm above the insertion of the primaryleaves. Growth regulators in lanolin were applied to the cutstem surface. IAA always inhibited axillary bud elongation anddry-matter accumulation, and enhanced internode dry weight butnot elongation. GA3 applied below the apical bud greatly increasedinternode elongation and dry weight, but simultaneously reducedbud elongation and dry-weight increase. Application of GA3 1cm above the buds had no effect on bud elongation in the youngestplants, but enhanced their elongation in the two older groups.IAA always antagonized GA3-enhancement of internode extensiongrowth, whereas its effects on GA3-enhanced dry-matter accumulationdepended on the stage of internode development. Bud elongationwas greater in plants treated with GA3+IAA than in plants treatedonly with IAA, except in the youngest plants decapitated immediatelybelow the apical bud, where GA3 caused a slight increase inIAA-induced bud inhibition. GA3 increased inhibition of buddry weight by IAA in the two youngest groups of plants, butslightly reduced it in the oldest plants. No simple compensatorygrowth relationship existed between internode and buds. It wasconcluded that, (1) auxin appears to be the principal growthhormone concerned in correlative inhibition, and (2) availabilityof gibberellin to internode and buds is of importance as a modifyingfactor in auxin-regulated apical dominance by virtue of itslocal effects on growth in the internode and in the buds.  相似文献   

2.
HARTUNG  W.; FUNFER  C. 《Annals of botany》1981,47(3):371-375
Abscisic acid (ABA) applied to the decapitated second internodeof runner bean plants enhanced outgrowth of lateral buds onlywhen internode stumps were no longer elongating. Applied toelongating internodes of slightly younger plants, ABA causesinhibition of bud outgrowth. Together with 10–4 M indol-3-ylacetic acid (IAA), ABA stimulated internode elongation and interactedadditively in the inhibition of bud outgrowth. A mixture of10–5 M ABA and 10–6 M gibberellic acid (GA3 ) causedsimilar effects on internode growth as IAA + ABA, but was mutuallyantagonistic in effect on growth of the lateral buds. Abscisic acid, apical dominance, gibberellic acid, indol-3yl acetic acid, Phaseolus coccineus, bean  相似文献   

3.
Sucrose, glucose and fructose concentrations, and sucrolytic enzyme activities were measured in the developing shoots and internodes of sprouting sugarcane setts (Saccharum spp, variety N19). The most striking change during the sink-source transition of the internode and germination of the axillary bud is a more than five-fold induction of cell wall invertase in the germinating bud. In contrast, soluble acid invertase is the main sucrose hydrolytic activity induced in the internodal tissue. A cycle of breakdown and synthesis of sucrose was evident in both the internodes and the shoots. During shoot establishment, the sucrose content decreased and the hexose content increased in the internodal tissues while both sucrose and hexoses continuously accumulated in the shoots. Over the sprouting period internode, dry mass was reduced by 25 and 30 % in plants incubated in a dark/light cycle or total darkness, respectively. Sucrose accounted for 90 % of the dry mass loss. The most significant changes in SuSy activity are in the synthesis direction in the shoots resulting in a decrease in the breakdown/synthesis ratio. In contrast the SuSy activity in the internodal tissue decrease and more so in the synthesis activity resulting in an increase in the breakdown to synthesis ratio.  相似文献   

4.
The ontogeny of peroxidase activity and isoenzyme pattern wasinvestigated in the stem of dwarf pea plants. Peroxidase activityper unit soluble protein was a given internode is highest inthe youngest growth stage, drops during elongation, remainsconstant upon cessation of growth, and increase at senescence.The lower the internode on the stem the higher is its peroxidaseactivity. These developmental differences are already apparentat the youngest growth stage of the internodes adn increaseduring elongation. Several anodic and five cathodic isoperoxidasesare apparent after starch gel electrophoresis. This patternis constant for all internodes at all growth stages, but therelative importance of particular isoenzymes changes with time. Gibberellic acid (GA3) treatment causes greatly elongated internodes,decreased soluble protein, and inhibition of the rise in peroxidaseactivity within 4–8 h. Application of GA3 to young internodesleads to a persistent depression in peroxidase activity, whiletreated older internodes suffer only a temporary depression.GA3 causes no qualitative changes in the isoenzyme pattern butproduces some quantitative alterations in internodes in whichits influence on peroxidase activity is persistent. Decapitation of untreated and GA3-treated dwarfs has littleinfluence on internode elongation, causes an increase in peroxidaseactivity, especially in the upper internodes, and alters therelative activity of particular isoenzymes. By contrast, decapitationinhibits elongation of young internodes in genetically tallpea plants.  相似文献   

5.
Previously 'frozen' Tulipa gesneriana L. bulbs cv. Apeldoorn, were planted and grown at higher temperatures to study the role of invertase (EC 3.2.1.26) in the cold-induced elongation of the flower stalk internodes. After planting, flower stalks were left intact, or, the leaves and flower bud were both removed to inhibit internode elongation. In intact flower stalks, elongation of the internodes was accompanied by an accumulation of glucose and an initial decrease in the sucrose content g,−1 dry weight. Insoluble invertase activity g,−1 dry weight hardly changed, but soluble invertase activity showed a peak pattern, that was related, at least for the greater part, to the changes in the sugar contents. Peak activities of soluble invertase were found during (lower- and uppermost internodes) or around the onset of the rapid phase of internode elongation (middle internodes). Internode elongation and glucose accumulation immediately ceased when the leaves and flower bud were removed. Insoluble invertase activity g,−1 dry weight remained at its initial level (lowermost internode) or increased more towards the upper internodes. Soluble invertase activity did not further increase (uppermost internode) or decreased abruptly to a low level. It is concluded that soluble invertase may be one of the factors contributing to glucose accumulation and internode elongation in the tulip flower stalk.  相似文献   

6.
Partial submergence or treatment with either ethylene or gibberellicacid (GA3 induces rapid growth in deepwater rice (Oryza sativaL.). We correlated the synthesis of two cell wall componentswith two phases of internodal elongation, namely (13,14)-ß-glucanformation with cell elongation and lignification with differentiationof the secondary cell wall and cessation of growth. The contentof ß-glucan was highest in the zone of cell elongationin internodes of air-grown plants and plants that were inducedto grow rapidly by submergence. In the intercalary meristemand in the differentiation zone of the internode, ß-glucanlevels were ca. 70% lower than in the zone of cell elongation.The outer cell layers, enriched in epidermis, contained moreß-glucan in submerged, rapidly growing internodesthan in air-grown, control internodes. The ß-glucancontent of the inner, parenchymal tissue was unaffected or slightlylowered by submergence. The epidermis appears to be the growth-limitingstructure of rapidly growing rice internodes. We hypothesizethat elevated levels of ß-glucan contribute to elongationgrowth by increasing the extensibility of the cell wall. Lignificationwas monitored by measuring the content of lignin and the activitiesof two enzymes of the lignin biosynthetic pathway, coniferylalcohol dehydrogenase (CAD) and phenylalanine ammonia-lyase(PAL), in growing and non-growing regions of the internode.Using submerged whole plants and GA3-treated excised stem segments,we showed that lignin content and CAD activity were up to sixfoldlower in newly formed internodal tissue of rapidly growing ricethan in slowly growing tissue. No differences were observedin parts of the internode that had been formed prior to inductionof growth. PAL activity was reduced throughout the internodeof submerged plants. We conclude that lignification is one ofthe processes that is suppressed to permit rapid growth. 1 This work was supported by the National Science Foundationthrough grants No. DCB-8718873 and DCB-9103747 and by the Departmentof Energy through grant No. DE-FGO2-90ER20021. M.S. was therecipient of a fellowship from the Max Kade Foundation.  相似文献   

7.
Effects of the plant growth retardant, ancymidol, on the growthand morphology of the shoot system of cucumber (Cucumis sativusL. ) were investigated. Ancymidol inhibited stem elongation,reducing both number and length of internodes. Reduction inleaf area, attributable to a reduction in both cell size andnumber, was accompanied by an increase in chlorophyll per unitarea. The retardant decreased apical dominance and delayed anthesis.Gibberellic acid fully reversed ancymidol-induced inhibitionof stem elongation, internode length and production, and leafexpansion. GA4/7 and ancymidol gave a synergistic promotionof stem elongation by increasing elongation of younger internodesand increasing internode production. Synergistic promotion ofpetiole elongation by this combination was also observed. Ancymidol,applied 7 d previously either to the shoot or root, severelyreduced the level of gibberellin-like activity in bleeding sapcollected from decapitated plants.  相似文献   

8.
BROUGHTON  W. J. 《Annals of botany》1969,33(2):227-243
1. A study was made of the influence of gibberellic acid (GA2)on nucleic acid, protein, and cell-wall synthesis in pea internodesin vivo. 2. GA3-treated fifth internodes finally contained more thantwice as much total RNA and protein as comparable untreatedones, and the contents of RNA and protein were closely relatedto the length of internode cortical cells. 3. Cell elongation, RNA, protein, and cell-wall synthesis werestimulated 24–48 h before there was any demonstrable GA3effect on DNA synthesis and cell division. 4. Treated fifth internodes finally contained twice as manycortical cells as control internodes, a response that was matchedby a proportionate increase in the amount of DNA. 5. Internodes treated with actinomycin D or cycloheximide failedto elongate in response to GA3 treatment, indicating that bothRNA and protein synthesis are essential for gibberellin-stimulatedcell elongation to occur in this tissue. 6. 5-fluorodeoxyuridine at concentrations which completely blockcell division did not prevent cells from elongating in the presenceof GA3. 7. With the possible exception of pectic substances there wasno change in the relative proportions of each of the major cell-wallconstituents in treated, as compared to control internodes.  相似文献   

9.
This investigation was undertaken to study the effect of GA3on extension growth of Glycine max L. and on starch contentof its individual internodes at maturity. The effect on hydrolyticactivity of the extract of different internodes was also studied.GA3 stimulates the extension growth of stem by increasing theelongation of those internodes which are either in the processof elongation or being differentiated at the time of treatment.Starch content decreases with the position of the internode(from base upwards) on the intact plant. Corresponding internodeshave minimum starch content in 100 ppm GA3-treated plants andmaximum in the controls. Internodes which show the maximum elongationdue to GA3 treatment, show the least starch content and alsoshow maximum hydrolytic activity during the period of elongation.It is suggested that enhanced extension growth is brought aboutby enhanced mobilization of reserve food by GA3. (Received November 21, 1967; )  相似文献   

10.
Changes in lamina area, dimensions of epidermal and palisadecells, acid invertase activity and content of sucrose and hexosein the primary leaves of Phaseolus vulgaris L. were determinedbetween emergence of the hypocotyl hook and the completion ofleaf expansion. Growth in area and thickness of the primaryleaf after emergence was attributable to the expansion of cellsalready present in the lamina at emergence. The major invertasein the expanding leaf was a readily soluble acid invertase;little insoluble invertase activity was detected. Soluble andinsoluble fractions of leaf homogenates contained little neutralinvertase activity. The specific activity of the soluble acidinvertase increased rapidly during the early stages of leafexpansion, reaching a peak at the time of most rapid cell enlargement(5 d after emergence) and then declining as the leaf matured.Highly significant positive correlations were found betweenenzyme specific activity and the rates of cell and leaf enlargement. The early, rapid phase of lamina expansion was characterizedby high concentrations of hexose sugar and low concentrationsof sucrose. As the rates of leaf cell enlargement declined theconcentration of hexose fell and that of sucrose increased.Between 5 d and 11 d after hypocotyl emergence, the hexose/sucroseratio in the primary leaf decreased approximately 10-fold asthe specific activity of acid invertase decreased. The results are discussed with reference to sources of carbonsubstrates for cell growth and to the sink/source transitionduring leaf development. Key words: Leaf expansion, Acid invertase, Hexose, Sucrose, Phaseolus  相似文献   

11.
Ethylene at 5–80 µl l–1 inhibited elongationand induced swelling in internodes of light-grown normal anddwarf pea plants; GA3 did not prevent swelling in response toethylene. GA3 neither inhibited nor enhanced the activity of isoperoxidasesin the internodes, regardless of its effect on their elongation.Ethylene at 80 µl l–1 enhanced peroxidase in GA3-untreatedand treated normal and dwarf plants. At 5 µl l–1,ethylene had only a weak effect on peroxidase activity or none.The enzyme enhancement by ethylene was not related to its effecton cell expansion and seems do be due, at least in part, tochemical injury. Electron microscopy revealed peroxidase activity in the roughER and cell walls, including intercellular spaces. Stainingof walls in ethylene-treated tissues was more pronounced thanin untreated ones. Golgi vesicles did not seem to be involvedin the assembly of the enzyme carbohydrate moiety in ethylene-treatedcells. The peroxidase fraction extracted with 20 mM phosphate buffer,pH 6, and that extracted from wall debris with 1 M NaCl accountedfor 98% of total enzyme activity. Both fractions contained thesame six cathodic isoforms which comprised 85–90% of theiractivity. Electrophoresis did not reveal differences in thequalitative isoenzyme patterns in relation to variety, age,GA3, or ethylene. The only observed quantitative differenceswere age-dependent. Procedural artefacts during separation of protoplast and wallionically bound peroxidase fractions are discussed.  相似文献   

12.
During the development of roots, internodes and leaves, closely correlated changes occur in the rates of cell expansion, specific activities of acid invertase and concentrations of hexose sugars and sucrose. Rates of cell growth and acid invertase activities frequently exhibit closely coupled responses to environmental changes and to growth regulator treatments. The possibility is considered that, by controlling the availability of hexose substrates for cellular metabolism, acid invertase may regulate cell growth. Potential mechanisms regulating the in vivo activity of acid invertases are reviewed and attention is drawn to the need for more information on the sub-cellular localization of the enzyme.  相似文献   

13.
In Pisum sativum L. a third, more severe, allele at the internodelength locus le is identified and named led. Plants homozygousfor led possess shorter internodes and appear relatively lessresponsive to GA20 than comparable le (dwarf) plants. Gene ledmay act by reducing the 3ß-hydroxylation of GA20 tothe highly active GA1 more effectively than does gene le. Theresults indicate that le is a leaky mutant and therefore thatendogenous GA1 influences internode elongation in dwarf (le)plants. Pisum sativum, peas, internode length, genetics, gibberellin, dwarf elongation  相似文献   

14.
Effects of Low Irradiance Stress on Gibberellin Levels in Pea Seedlings   总被引:9,自引:0,他引:9  
Using gas chromatography-selected ion monitoring with internalstandards we analyzed endogenous levels of GA1, GA8, GA19, GA20,GA29, GA44 and GA53 in shoots of pea cv. Alaska grown underdifferent levels of irradiance: high irradiance, 386±70µmolm-2s-1, control (100%); medium (50%); low (10%); darkness (0%).The average plant heights for medium and low irradiance anddark grown plants were 157%, 275%, and 460% of the control plants,respectively. Plants grown in medium and low irradiance developedthe same numbers of internodes as control plants but plantsin darkness developed fewer internodes and exhibited suppressedleaf expansion. The endogenous levels of GA1 GA8 and GA29 werehigher in medium and low irradiance grown plants than thoseof the high irradiance control. In particular, the GA20 levelof low irradiance plants was markedly higher (7.6-fold) thanthat of control plants. In dark-grown plants GA1, and GA8 levelsalso slightly increased but GA20 and GA29 levels decreased andthe levels of GA19, GA44 and GA53 did not change. Feeding ofGA1, and a GA biosynthesis inhibitor (uniconazole) to plantsgrown at reduced irradiance and in darkness suggests that theresponsiveness of plants to GA1, also increased at low irradianceand in darkness. In conclusion, plants increase both GA1, andGA20 biosynthesis or altered catabolism and GA1, responsivenessunder low irradiance stress 1Present address: Dept. of Plant Physiol., Warsaw AgriculturalUniversity, Rakowiecka 26-30, 02-528 Warsaw, Poland  相似文献   

15.
The application of gibberellic acid (GA3,10 μ M ) as a root drench to 16-day-old plants of Phaseolus vulgaris L. cv. Masterpiece stimulated growth of the stem internodes and reduced root growth. GA3 treatment did not affect the export of 14C from a primary leaf to which [14C]-sucrose was applied, but greatly increased upward translocation to the elongation region of the stem at the expense of transport to the hypocotyl and root system. The observed changes in the patterns of growth and [14C]-labelled assimilate distribution were correlated with an increase in the specific activity of acid invertase in the elongating stem internodes and a decrease in invertase activity in the hypocotyl and root. Sucrose concentration in the elongating internodes fell substantially after treatment with GA3 while the concentration of hexose sugars increased. We suggest that by stimulating acid invertase synthesis in the elongating internodes, GA3 acts to establish a more favourable sucrose gradient between these sinks and source leaves. Under source-limiting conditions this, in turn, will lead to a reduced rate of assimilate translocation to competing sinks in the root system.  相似文献   

16.
Role of polyamines in gibberellin-induced internode growth in peas   总被引:1,自引:0,他引:1       下载免费PDF全文
To determine the requirement for polyamines in gibberellin (GA) induced internode growth polyamine content was measured in internodes of peas of various internode phenotypes (slender, tall, dwarf, nana) with and without applied gibberellin (GA3) and polyamine synthesis inhibitors. Polyamines were assayed as dansyl derivatives which were separated by reverse phase high performance liquid chromatography and detected by fluorescence spectrophotometry. The amounts of polyamines in the different genetic lines of peas, which differed in internode lengths and extractable GA content, correlated with the extent of internode elongation. High polyamine concentrations were associated with young internodes and decreased with internode expansion. Extremely short internodes of nana plants without GA exhibited equal or higher amine concentrations relative to internodes of other lines of peas and GA-stimulated nana seedlings. The polyamine synthesis inhibitors, α-difluoromethylornithine and α-difluoromethylarginine, independently or in combination, inhibited polyamine accumulation and internode elongation of tall peas and GA-stimulated nana plants. Agmatine and putrescine restored growth and endogenous polyamine content to variable degrees. However, exogenous polyamines were not effective in promoting growth unless intracellular amines were partially depleted.

These results suggest that polyamines do not have a role in cell elongation, but may be required to support cell proliferation. Polyamines do not mediate the entire action of GA in internode growth of peas since GA induction of growth involves both cell division and cell elongation, whereas polyamines appear to affect cell division only.

  相似文献   

17.
18.
The sensitivity of light-grown cucumber hypocotyl sections toIAA and GA3 depends on the degree of aging of the tissue. Agreater response to GA3 was obtained with young tissue, whilethat to IAA was obtained with relatively old tissue. The responseto IAA reached a maximum at about 15 hr of incubation; the youngerthe tissue the earlier the time of maximum response. The responseto GA3 continued for more than 70 hr with a constant growthrate. Very young tissue started to respond to GA3 without lagtime; the older the tissue the later the start of the response. Sucrose (2%) inhibited IAA-induced elongation, while there wasa distinct synergism between GA3 and sucrose. The promotiveeffect of sucrose on GA3-induced elongation was also obtainedwhen sections were pretreated with sucrose, then transferredto GA3. Mannitol (1%) strongly inhibited IAA-induced elongation,but not GA3-induced elongation. (Received December 6, 1972; )  相似文献   

19.
The effects of GA3 on the water absorption, osmotic potentialand starch content of light-grown cucumber (cv. Aonagajibai)hypocotyl sections were examined. GA3 (100µM.) stimulatedfresh weight increase as well as elongation. It had no effecton the dry weight change in the presence, or absence, of 50mM sucrose although dry weight increased significantly in thepresence of sucrose. In the absence of sucrose the weight wasunchanged. The osmotic potential of the epidermal cells of sectionsincubated with GA3 was lower than that of the control, and thedifference between the two values was larger in young seedlings.When sections were incubated with sucrose, the osmotic potentialgreatly decreased. This decrease was more marked in the presenceof GA3. GA3 reduced the starch content of the sections bothin the presence and absence of sucrose. The total amount ofstarch, however, was markedly increased in its presence. Thedegradation of starch formed in advance from exogenous sucrosein light was not accelerated by GA3. We discuss a possible rolefor gibberellin in cell elongation, based on our results, interms of cell water relations. (Received January 18, 1983; Accepted July 19, 1983)  相似文献   

20.
Decapitation of the fully-elongated fourth internode of Phaseolus vulgaris plants resulted in the disappearance from the internode of soluble acid invertase (EC 3.2.1.26). This loss was prevented by local applications to the internode of indol-3yl-acetic acid (IAA) and, at the point of IAA application, the specific activity of the enzyme increased by up to 3 times its initial value within 48 h of treatment. IAA applications stimulated the acropetal translocation to the internode of 14C-sucrose applied to the subtending (second) trifoliate leaf 30 h after decapitation and the start of the auxin treatment. Labelled assimilates accumulated in the IAA-treated region of the internode. Following decapitation the concentration of hexose sugars in the internode fell and that of sucrose rose substantially, but these trends were reversed by IAA treatment. However, small local accumulations of sucrose occurred at the point of auxin application where tissue concentrations of IAA were greatest (determined using [1-14C] IAA).Considerable quantities of starch were present in the ground parenchyma of the internodes at the start of the experiment but, in the absence of IAA, this was remobilised within 48 h of decapitation. IAA prevented starch loss at and below its point of application to the internode, but not from more distal tissues. Cambial proliferation, radial growth and lignification were stimulated in and below IAA-treated regions of the internode. These observations are discussed in relation to the hormonal regulation of assimilate translocation in the phloem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号