首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

Objective

Gray matter loss in the limbic structures was found in recent onset post traumatic stress disorder (PTSD) patients. In the present study, we measured regional gray matter volume in trauma survivors to verify the hypothesis that stress may cause different regional gray matter loss in trauma survivors with and without recent onset PTSD.

Method

High resolution T1-weighted magnetic resonance imaging (MRI) were obtained from coal mine flood disaster survivors with (n = 10) and without (n = 10) recent onset PTSD and 20 no trauma exposed normal controls. The voxel-based morphometry (VBM) method was used to measure the regional gray matter volume in three groups, the correlations of PTSD symptom severities with the gray matter volume in trauma survivors were also analyzed by multiple regression.

Results

Compared with normal controls, recent onset PTSD patients had smaller gray matter volume in left dorsal anterior cingulate cortex (ACC), and non PTSD subjects had smaller gray matter volume in the right pulvinar and left pallidum. The gray matter volume of the trauma survivors correlated negatively with CAPS scores in the right frontal lobe, left anterior and middle cingulate cortex, bilateral cuneus cortex, right middle occipital lobe, while in the recent onset PTSD, the gray matter volume correlated negatively with CAPS scores in bilateral superior medial frontal lobe and right ACC.

Conclusion

The present study identified gray matter loss in different regions in recent onset PTSD and non PTSD after a single prolonged trauma exposure. The gray matter volume of left dorsal ACC associated with the development of PTSD, while the gray matter volume of right pulvinar and left pallidum associated with the response to the severe stress. The atrophy of the frontal and limbic cortices predicts the symptom severities of the PTSD.  相似文献   

2.

Background

Gait impairments increase with advancing age and can lead to falls and loss of independence. Brain atrophy also occurs in older age and may contribute to gait decline. We aimed to investigate global and regional relationships of cerebral gray and white matter volumes with gait speed, and its determinants step length and cadence, in older people.

Methods

In a population-based study, participants aged >60 years without Parkinson''s disease or brain infarcts underwent magnetic resonance imaging and gait measurements using a computerized walkway. Linear regression was used to study associations of total gray and white matter volumes with gait, adjusting for each other, age, sex, height and white matter hyperintensity volume. Other covariates considered in analyses included weight and vascular disease history. Voxel-based morphometry was used to study regional relationships of gray and white matter with gait.

Results

There were 305 participants, mean age 71.4 (6.9) years, 54% male, mean gait speed 1.16 (0.22) m/s. Smaller total gray matter volume was independently associated with poorer gait speed (p = 0.001) and step length (p<0.001), but not cadence. Smaller volumes of cortical and subcortical gray matter in bilateral regions important for motor control, vision, perception and memory were independently associated with slower gait speed and shorter steps. No global or regional associations were observed between white matter volume and gait independent of gray matter volume, white matter hyperintensity volume and other covariates.

Conclusion

Smaller gray matter volume in bilaterally distributed brain networks serving motor control was associated with slower gait speed and step length, but not cadence.  相似文献   

3.

Background

Preclinical studies have demonstrated the relationship between stress-induced increased cortisol levels and atrophy of specific brain regions, however, this association has been less revealed in clinical samples. The aim of the present study was to investigate the changes and associations of the hypothalamic-pituitary-adrenal (HPA) axis activity and gray matter volumes in young healthy adults with self-reported childhood trauma exposures.

Methods

Twenty four healthy adults with childhood trauma and 24 age- and gender-matched individuals without childhood trauma were recruited. Each participant collected salivary samples in the morning at four time points: immediately upon awakening, 30, 45, and 60 min after awakening for the assessment of cortisol awakening response (CAR). The 3D T1-weighted magnetic resonance imaging data were obtained on a Philips 3.0 Tesla scanner. Voxel-based morphometry analyses were conducted to compare the gray matter volume between two groups. Correlations of gray matter volume changes with severity of childhood trauma and CAR data were further analyzed.

Results

Adults with self-reported childhood trauma showed an enhanced CAR and decreased gray matter volume in the right middle cingulate gyrus. Moreover, a significant association was observed between salivary cortisol secretions after awaking and the right middle cingulate gyrus volume reduction in subjects with childhood trauma.

Conclusions

The present research outcomes suggest that childhood trauma is associated with hyperactivity of the HPA axis and decreased gray matter volume in the right middle cingulate gyrus, which may represent the vulnerability for developing psychosis after childhood trauma experiences. In addition, this study demonstrates that gray matter loss in the cingulate gyrus is related to increased cortisol levels.  相似文献   

4.
Yuan K  Qin W  Wang G  Zeng F  Zhao L  Yang X  Liu P  Liu J  Sun J  von Deneen KM  Gong Q  Liu Y  Tian J 《PloS one》2011,6(6):e20708

Background

Recent studies suggest that internet addiction disorder (IAD) is associated with structural abnormalities in brain gray matter. However, few studies have investigated the effects of internet addiction on the microstructural integrity of major neuronal fiber pathways, and almost no studies have assessed the microstructural changes with the duration of internet addiction.

Methodology/Principal Findings

We investigated the morphology of the brain in adolescents with IAD (N = 18) using an optimized voxel-based morphometry (VBM) technique, and studied the white matter fractional anisotropy (FA) changes using the diffusion tensor imaging (DTI) method, linking these brain structural measures to the duration of IAD. We provided evidences demonstrating the multiple structural changes of the brain in IAD subjects. VBM results indicated the decreased gray matter volume in the bilateral dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the orbitofrontal cortex (OFC), the cerebellum and the left rostral ACC (rACC). DTI analysis revealed the enhanced FA value of the left posterior limb of the internal capsule (PLIC) and reduced FA value in the white matter within the right parahippocampal gyrus (PHG). Gray matter volumes of the DLPFC, rACC, SMA, and white matter FA changes of the PLIC were significantly correlated with the duration of internet addiction in the adolescents with IAD.

Conclusions

Our results suggested that long-term internet addiction would result in brain structural alterations, which probably contributed to chronic dysfunction in subjects with IAD. The current study may shed further light on the potential brain effects of IAD.  相似文献   

5.

Background & Objectives

It is well known that cognitive impairment in patients with chronic kidney disease (CKD) is characterized by executive dysfunction, rather than memory dysfunction, although the precise mechanism of this remains to be elucidated. The purpose of the present study is to examine the correlation between gray matter volume (GMV) and executive function in CKD patients.

Design, Setting, Participants, Measurements

This cross-sectional study recruited 95 patients with non-dialysis-dependent CKD (NDD-CKD) with no history of cerebrovascular disease, who underwent brain magnetic resonance imaging (MRI) and Trail Making Test (TMT) in the VCOHP Study. The subjects underwent brain MRI and TMT part A (TMT-A) and part B (TMT-B). The segmentation algorithm from Statistical Parametric Mapping 8 software was applied to every T1-weighted MRI scan to extract tissue maps corresponding to gray matter, white matter, and cerebrospinal fluid. GMV was normalized by dividing by the total intracranial volume, calculated by adding GMV, white matter volume, and cerebrospinal fluid space volume. Then, normalized whole-brain GMV was divided into four categories of brain lobes; frontal, parietal, temporal, and occipital. We assessed the correlation between normalized GMV and TMT using multivariable regression analysis.

Results

Normalized whole-brain GMV was significantly inversely correlated to the scores of TMT-A, TMT-B, and ΔTMT (TMT-B minus TMT-A). These correlations remained significant even after adjusting for relevant confounding factors. Normalized frontal and temporal GMV, but not parietal and occipital GMV, were significantly inversely correlated with TMT-A, TMT-B, and ΔTMT using multivariable regression analysis.

Conclusions

The present study demonstrates the correlation between normalized GMV, especially in the frontal and temporal lobes, and executive function, suggesting that fronto-temporal gray matter atrophy might contribute to executive dysfunction in NDD-CKD.  相似文献   

6.

Background

Generalized anxiety disorder (GAD) is a common anxiety disorder that usually begins in adolescence. Childhood maltreatment is highly prevalent and increases the possibility for developing a variety of mental disorders including anxiety disorders. An earlier age at onset of GAD is significantly related to maltreatment in childhood. Exploring the underpinnings of the relationship between childhood maltreatment and adolescent onset GAD would be helpful in identifying the potential risk markers of this condition.

Methods

Twenty-six adolescents with GAD and 25 healthy controls participated in this study. A childhood trauma questionnaire (CTQ) was introduced to assess childhood maltreatment. All subjects underwent high-resolution structural magnetic resonance scans. Voxel-based morphometry (VBM) was used to investigate gray matter alterations.

Results

Significantly larger gray matter volumes of the right putamen were observed in GAD patients compared to healthy controls. In addition, a significant diagnosis-by-maltreatment interaction effect for the left thalamic gray matter volume was revealed, as shown by larger volumes of the left thalamic gray matter in GAD patients with childhood maltreatment compared with GAD patients without childhood maltreatment as well as with healthy controls with/without childhood maltreatment. A significant positive association between childhood maltreatment and left thalamic gray matter volume was only seen in GAD patients.

Conclusions

These findings revealed an increased volume in the subcortical regions in adolescent GAD, and the alterations in the left thalamus might be involved in the association between childhood maltreatment and the occurrence of GAD.  相似文献   

7.

Objective

Idiopathic trigeminal neuralgia (TN) is characterized by paroxysms of severe facial pain but without the major sensory loss that commonly accompanies neuropathic pain. Since neurovascular compression of the trigeminal nerve root entry zone does not fully explain the pathogenesis of TN, we determined whether there were brain gray matter abnormalities in a cohort of idiopathic TN patients. We used structural MRI to test the hypothesis that TN is associated with altered gray matter (GM) in brain areas involved in the sensory and affective aspects of pain, pain modulation, and motor function. We further determined the contribution of long-term TN on GM plasticity.

Methods

Cortical thickness and subcortical GM volume were measured from high-resolution 3T T1-weighted MRI scans in 24 patients with right-sided TN and 24 healthy control participants.

Results

TN patients had increased GM volume in the sensory thalamus, amygdala, periaqueductal gray, and basal ganglia (putamen, caudate, nucleus accumbens) compared to healthy controls. The patients also had greater cortical thickness in the contralateral primary somatosensory cortex and frontal pole compared to controls. In contrast, patients had thinner cortex in the pregenual anterior cingulate cortex, the insula and the orbitofrontal cortex. No relationship was observed between GM abnormalities and TN pain duration.

Conclusions

TN is associated with GM abnormalities in areas involved in pain perception, pain modulation and motor function. These findings may reflect increased nociceptive input to the brain, an impaired descending modulation system that does not adequately inhibit pain, and increased motor output to control facial movements to limit pain attacks.  相似文献   

8.

Objective

To identify early changes in brain structure and function that are associated with cardiovascular risk factors (CVRF).

Design

Cross-sectional brain Magnetic Resonance I (MRI) study.

Setting

Community based cohort in three U.S. sites.

Participants

A Caucasian and African-American sub-sample (n= 680; mean age 50.3 yrs) attending the 25 year follow-up exam of the Coronary Artery Risk Development in Young Adults Study.

Primary and Secondary Outcomes

3T brain MR images processed for quantitative estimates of: total brain (TBV) and abnormal white matter (AWM) volume; white matter fractional anisotropy (WM-FA); and gray matter cerebral blood flow (GM-CBF). Total intracranial volume is TBV plus cerebral spinal fluid (TICV). A Global Cognitive Function (GCF) score was derived from tests of speed, memory and executive function.

Results

Adjusting for TICV and demographic factors, current smoking was significantly associated with lower GM-CBF and TBV, and more AWM (all <0.05); SA with lower GM-CBF, WM-FA and TBV (p=0.01); increasing BMI with decreasing GM-CBF (p<0003); hypertension with lower GM-CBF, WM-FA, and TBV and higher AWM (all <0.05); and diabetes with lower TBV (p=0.007). The GCS was lower as TBV decreased, AWM increased, and WM-FA (all p<0.01).

Conclusion

In middle age adults, CVRF are associated with brain health, reflected in MRI measures of structure and perfusion, and cognitive functioning. These findings suggest markers of mid-life cardiovascular and brain health should be considered as indication for early intervention and future risk of late-life cerebrovascular disease and dementia.  相似文献   

9.

Background

Androgen deprivation therapy (ADT) is a common treatment for non-metastatic, low-risk prostate cancer, but a potential side effect of ADT is impaired brain functioning. Previous work with functional magnetic resonance imaging (MRI) demonstrated altered prefrontal cortical activations in cognitive control, with undetectable changes in behavioral performance. Given the utility of brain imaging in identifying the potentially deleterious effects of ADT on brain functions, the current study examined the effects of ADT on cerebral structures using high resolution MRI and voxel-based morphometry (VBM).

Methods

High resolution T1 weighted image of the whole brain were acquired at baseline and six months after ADT for 12 prostate cancer patients and 12 demographically matched non-exposed control participants imaged at the same time points. Brain images were segmented into gray matter, white matter and cerebral ventricles using the VBM toolbox as implemented in Statistical Parametric Mapping 8.

Results

Compared to baseline scan, prostate cancer patients undergoing ADT showed decreased gray matter volume in frontopolar cortex, dorsolateral prefrontal cortex and primary motor cortex, whereas the non-exposed control participants did not show such changes. In addition, the decrease in gray matter volume of the primary motor cortex showed a significant correlation with longer reaction time to target detection in a working memory task.

Conclusions

ADT can affect cerebral gray matter volumes in prostate cancer patients. If replicated, these results may facilitate future studies of cognitive function and quality of life in men receiving ADT, and can also help clinicians weigh the benefits and risks of hormonal therapy in the treatment of prostate cancer.  相似文献   

10.

Background

The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA) 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls.

Methods

Genotype effects of rs12807809 were investigated on gray matter (GM) and white matter (WM) volumes using magnetic resonance imaging (MRI) with a voxel-based morphometry (VBM) technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls.

Results

Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC). Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32) than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls.

Conclusions

Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.  相似文献   

11.

Background

There is limited and inconclusive evidence that space environment, especially microgravity condition, may affect microstructure of human brain. This experiment hypothesized that there would be modifications in gray matter (GM) and white matter (WM) of the brain due to microgravity.

Method

Eighteen male volunteers were recruited and fourteen volunteers underwent -6° head-down bed rest (HDBR) for 30 days simulated microgravity. High-resolution brain anatomical imaging data and diffusion tensor imaging images were collected on a 3T MR system before and after HDBR. We applied voxel-based morphometry and tract-based spatial statistics analysis to investigate the structural changes in GM and WM of brain.

Results

We observed significant decreases of GM volume in the bilateral frontal lobes, temporal poles, parahippocampal gyrus, insula and right hippocampus, and increases of GM volume in the vermis, bilateral paracentral lobule, right precuneus gyrus, left precentral gyrus and left postcentral gyrus after HDBR. Fractional anisotropy (FA) changes were also observed in multiple WM tracts.

Conclusion

These regions showing GM changes are closely associated with the functional domains of performance, locomotion, learning, memory and coordination. Regional WM alterations may be related to brain function decline and adaption. Our findings provide the neuroanatomical evidence of brain dysfunction or plasticity in microgravity condition and a deeper insight into the cerebral mechanisms in microgravity condition.  相似文献   

12.

Background

Early gestation represents a period of vulnerability to environmental insult that has been associated with adult psychiatric disease. However, little is known about how prenatal perturbation translates into adult brain dysfunction. Here, we use a longitudinal study design to examine the effects of disruption of early gestational neurogenesis on brain volume in the non-human primate.

Methods and Principal Findings

Five Rhesus macaques were exposed to x-irradiation in early gestation (E30–E41), and four control monkeys were sham-irradiated at comparable ages. Whole brain magnetic resonance imaging was performed at 6 months, 12 months, and 3 and 5 years of age. Volumes of whole cerebrum, cortical gray matter, caudate, putamen, and thalamus were estimated using semi-automated segmentation methods and high dimensional brain mapping. Volume reductions spanning all ages were observed in irradiated monkeys in the putamen (15–24%, p = 0.01) and in cortical gray matter (6–15%, p = 0.01). Upon covarying for whole cerebral volume, group differences were reduced to trend levels (putamen: p = 0.07; cortical gray matter: p = 0.08). No group-by-age effects were significant.

Conclusions

Due to the small number of observations, the conclusions drawn from this study must be viewed as tentative. Early gestational irradiation may result in non-uniform reduction of gray matter, mainly affecting the putamen and cerebral cortex. This may be relevant to understanding how early prenatal environmental insult could lead to brain morphological differences in neurodevelopmental diseases.  相似文献   

13.

Background

In the graph theoretical analysis of anatomical brain connectivity, the white matter connections between regions of the brain are identified and serve as basis for the assessment of regional connectivity profiles, for example, to locate the hubs of the brain. But regions of the brain can be characterised further with respect to their gray matter volume or resting state perfusion. Local anatomical connectivity, gray matter volume and perfusion are traits of each brain region that are likely to be interdependent, however, particular patterns of systematic covariation have not yet been identified.

Methodology/Principal Findings

We quantified the covariation of these traits by conducting an integrative MRI study on 23 subjects, utilising a combination of Diffusion Tensor Imaging, Arterial Spin Labeling and anatomical imaging. Based on our hypothesis that local connectivity, gray matter volume and perfusion are linked, we correlated these measures and particularly isolated the covariation of connectivity and perfusion by statistically controlling for gray matter volume. We found significant levels of covariation on the group- and regionwise level, particularly in regions of the Default Brain Mode Network.

Conclusions/Significance

Connectivity and perfusion are systematically linked throughout a number of brain regions, thus we discuss these results as a starting point for further research on the role of homology in the formation of functional connectivity networks and on how structure/function relationships can manifest in the form of such trait interdependency.  相似文献   

14.

Introduction

Lacunar lesions (LLs) and white matter lesions (WMLs) affect cognition. We assessed whether lesions located in specific white matter tracts were associated with cognitive performance taking into account total lesion burden.

Methods

Within the Second Manifestations of ARTerial disease Magnetic Resonance (SMART-MR) study, cross-sectional analyses were performed on 516 patients with manifest arterial disease. We applied an assumption-free voxel-based lesion-symptom mapping approach to investigate the relation between LL and WML locations on 1.5 Tesla brain MRI and compound scores of executive functioning, memory and processing speed. Secondly, a multivariable linear regression model was used to relate the regional volume of LLs and WMLs within specific white matter tracts to cognitive functioning.

Results

Voxel-based lesion-symptom mapping identified several clusters of voxels with a significant correlation between WMLs and executive functioning, mostly located within the superior longitudinal fasciculus and anterior thalamic radiation. In the multivariable linear regression model, a statistically significant association was found between regional LL volume within the superior longitudinal fasciculus and anterior thalamic radiation and executive functioning after adjustment for total LL and WML burden.

Conclusion

These findings identify the superior longitudinal fasciculus and anterior thalamic radiation as key anatomical structures in executive functioning and emphasize the role of strategically located vascular lesions in vascular cognitive impairment.  相似文献   

15.

Objectives

Postoperative cognitive dysfunction (POCD) is recognized as a complication in the elderly after cardiac surgery. Imaging of the brain provides evidence of neurodegeneration in elderly patients; however, abnormalities in brain structure and their relation to POCD are uncertain. This pilot study investigated whether loss of gray matter in the bilateral medial temporal lobe (MTL), seen in preoperative MRI, was associated with POCD.

Methods

Data were collected prospectively on 28 elderly patients scheduled for elective cardiac surgery. MRI of the brains of all patients were assessed for prior cerebral infarctions, and carotid and intracranial arterial stenosis. Patients also completed six neuropsychological tests of memory, attention and executive function before and after surgery. POCD was defined as an individual decrease in more than two tests of at least 1 standard deviation from the group baseline mean for that test. The degree of gray matter loss in the MTL of each patient was calculated using voxel-based morphometry with three-dimensional, T1-weighted MRI. This represented the degree of gray matter change as a Z score.

Results

Postoperative cognitive dysfunction was identified in 8 of the 28 patients (29%). Patients with POCD had significantly more white matter lesions on MRI, and greater loss of gray matter in the bilateral MTL (average Z score 2.0±0.9) than patients without POCD. An analysis by stepwise logistic regression identified gray matter loss in the MTL and cerebral infarctions on MRI as independent predictors of POCD.

Conclusions

These preliminary findings suggested that reduced gray matter in the bilateral MTL and white matter lesions existed in brains of elderly cardiac surgery patients who experienced POCD. Additional studies with larger sample sizes are needed to confirm these findings.  相似文献   

16.

Background and Purpose

Ornithine transcarbamylase deficiency (OTCD) is an X-chromosome linked urea cycle disorder (UCD) that causes hyperammonemic episodes leading to white matter injury and impairments in executive functioning, working memory, and motor planning. This study aims to investigate differences in functional connectivity of two resting-state networks—default mode and set-maintenance—between OTCD patients and healthy controls.

Methods

Sixteen patients with partial OTCD and twenty-two control participants underwent a resting-state scan using 3T fMRI. Combining independent component analysis (ICA) and region-of-interest (ROI) analyses, we identified the nodes that comprised each network in each group, and assessed internodal connectivity.

Results

Group comparisons revealed reduced functional connectivity in the default mode network (DMN) of OTCD patients, particularly between the anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) node and bilateral inferior parietal lobule (IPL), as well as between the ACC/mPFC node and the posterior cingulate cortex (PCC) node. Patients also showed reduced connectivity in the set-maintenance network, especially between right anterior insula/frontal operculum (aI/fO) node and bilateral superior frontal gyrus (SFG), as well as between the right aI/fO and ACC and between the ACC and right SFG.

Conclusion

Internodal functional connectivity in the DMN and set-maintenance network is reduced in patients with partial OTCD compared to controls, most likely due to hyperammonemia-related white matter damage. Because several of the affected areas are involved in executive functioning, it is postulated that this reduced connectivity is an underlying cause of the deficits OTCD patients display in this cognitive domain.  相似文献   

17.

Background and Purpose

Cognitive impairment is a well-described phenomenon in end-stage renal disease (ESRD) patients. However, its pathogenesis remains poorly understood. The primary focus of this study was to examine structural and functional brain deficits in ESRD patients.

Materials and Methods

Thirty ESRD patients on hemodialysis (without clinical neurological disease) and 30 age- and gender-matched control individuals (without renal or neurological problems) were recruited in a prospective, single-center study. High-resolution structural magnetic resonance imaging (MRI) and resting state functional MRI were performed on both groups to detect the subtle cerebral deficits in ESRD patients. Voxel-based morphometry was used to characterize gray matter deficits in ESRD patients. The impact of abnormal morphometry on the cerebral functional integrity was investigated by evaluating the alterations in resting state functional connectivity when brain regions with gray matter volume reduction were used as seed areas.

Results

A significant decrease in gray matter volume was observed in ESRD patients in the bilateral medial orbito-prefrontal cortices, bilateral dorsal lateral prefrontal cortices, and the left middle temporal cortex. When brain regions with gray matter volume reduction were used as seed areas, the integration was found to be significantly decreased in ESRD patients in the fronto-cerebellum circuits and within prefrontal circuits. In addition, significantly enhanced functional connectivity was found between the prefrontal cortex and the left temporal cortex and within the prefrontal circuits.

Conclusions

Our study revealed that both the structural and functional cerebral cortices were impaired in ESRD patients on routine hemodialysis.  相似文献   

18.

Background

Long duration of untreated psychosis (DUP) is associated with poor treatment outcome. Whether or not DUP is related to brain gray matter volume abnormalities in antipsychotic medication treatment naïve schizophrenia remains unclear at this time.

Methods

Patients with treatment-naïve schizophrenia and healthy controls went through brain scan using high resolution Magnetic Resonance Imaging. DUP was evaluated using the Nottingham Onset Schedule (NOS), and dichotomized as short DUP (≤ 26 weeks) or long DUP (>26 weeks). Voxel-based methods were used for volumetric measure in the brain.

Results

Fifty-seven patients (27 short DUP and 30 long DUP) and 30 healthy controls were included in the analysis. There were significant gray matter volumetric differences among the 3 groups in bilateral parahippocampus gyri, right superior temporal gyrus, left fusiform gyrus, left middle temporal gyrus, and right superior frontal gyrus (p''s<0.01). Compared with healthy controls, the long DUP group had significantly smaller volume in all these regions (p''s <0.05). Compared with the short-DUP group, the long-DUP group had significantly smaller volume in right superior temporal gyrus, left fusiform gyrus, and left middle temporal gyrus (p''s<0.01).

Conclusion

Our findings suggest that DUP is associated with temporal and occipitotemporal gray matter volume decrease in treatment naïve schizophrenia. The brain structural changes in untreated psychosis might contribute to poor treatment response and long-term prognosis in this patient population.  相似文献   

19.
Cheng Y  Chou KH  Fan YT  Lin CP 《PloS one》2011,6(4):e18905

Background

Autism spectrum disorders (ASD) are characterized by aberrant neurodevelopment. Although the ASD brain undergoes precocious growth followed by decelerated maturation during early postnatal period of childhood, the neuroimaging approach has not been empirically applied to investigate how the ASD brain develops during adolescence.

Methodology/Principal Findings

We enrolled 25 male adolescents with high functioning ASD and 25 typically developing controls for voxel-based morphometric analysis of structural magnetic resonance image. Results indicate that there is an imbalance of regional gray matter volumes and concentrations along with no global brain enlargement in adolescents with high functioning ASD relative to controls. Notably, the right inferior parietal lobule, a role in social cognition, have a significant interaction of age by groups as indicated by absence of an age-related gain of regional gray matter volume and concentration for neurodevelopmental maturation during adolescence.

Conclusions/Significance

The findings indicate the neural correlates of social cognition exhibits aberrant neurodevelopment during adolescence in ASD, which may cast some light on the brain growth dysregulation hypothesis. The period of abnormal brain growth during adolescence may be characteristic of ASD. Age effects must be taken into account while measures of structural neuroimaging have been clinically put forward as potential phenotypes for ASD.  相似文献   

20.

Background

Childhood lead exposure is a purported risk factor for antisocial behavior, but prior studies either relied on indirect measures of exposure or did not follow participants into adulthood to examine the relationship between lead exposure and criminal activity in young adults. The objective of this study was to determine if prenatal and childhood blood lead concentrations are associated with arrests for criminal offenses.

Methods and Findings

Pregnant women were recruited from four prenatal clinics in Cincinnati, Ohio if they resided in areas of the city with a high concentration of older, lead-contaminated housing. We studied 250 individuals, 19 to 24 y of age, out of 376 children who were recruited at birth between 1979 and 1984. Prenatal maternal blood lead concentrations were measured during the first or early second trimester of pregnancy. Childhood blood lead concentrations were measured on a quarterly and biannual basis through 6.5 y. Study participants were examined at an inner-city pediatric clinic and the Cincinnati Children''s Hospital Medical Center in Cincinnati, Ohio. Total arrests and arrests for offenses involving violence were collected from official Hamilton County, Ohio criminal justice records. Main outcomes were the covariate-adjusted rate ratios (RR) for total arrests and arrests for violent crimes associated with each 5 μg/dl (0.24 μmol/l) increase in blood lead concentration. Adjusted total arrest rates were greater for each 5 μg/dl (0.24 μmol/l) increase in blood lead concentration: RR = 1.40 (95% confidence interval [CI] 1.07–1.85) for prenatal blood lead, 1.07 (95% CI 0.88–1.29) for average childhood blood lead, and 1.27 (95% CI 1.03–1.57) for 6-year blood lead. Adjusted arrest rates for violent crimes were also greater for each 5 μg/dl increase in blood lead: RR = 1.34 (95% CI 0.88–2.03) for prenatal blood lead, 1.30 (95% CI 1.03–1.64) for average childhood blood lead, and 1.48 (95% CI 1.15–1.89) for 6-year blood lead.

Conclusions

Prenatal and postnatal blood lead concentrations are associated with higher rates of total arrests and/or arrests for offenses involving violence. This is the first prospective study to demonstrate an association between developmental exposure to lead and adult criminal behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号