首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 114 毫秒
1.
钱娟  齐义鹏 《病毒学报》2005,21(6):461-467
对虾白斑综合征是一种严重危害对虾养殖业的病毒性疾病.由于目前对其病原体对虾白斑综合征病毒(WSSV)的研究不够深入,所以对WSSV的有效防治仍然是一大难题.为此,用完整的对虾白斑综合征病毒粒子作为靶抗原固相包被,淘选噬菌体展示单链抗体文库,得到两个能够与WSSV结合的单链抗体:E2和H4.单链抗体H4能够结合病毒并抑制病毒对原代培养的对虾淋巴细胞的感染,这些结果表明此单链抗体具有开发为诊断试剂盒和抗病毒药物的潜力.  相似文献   

2.
王蔚  章晓波 《生命科学》2010,(11):1102-1106
白斑综合征病毒(white spot syndrome virus,WSSV)是危害对虾的主要病原,给全球水产养殖业带来了巨大经济损失,但至今仍未发现有效的防治方法。过去10年来,国内外学者在WSSV侵染和对虾抗病毒免疫的研究方面取得了长足的进展,该文主要介绍这方面的研究进展。  相似文献   

3.
对虾白斑综合征及其免疫防控   总被引:2,自引:0,他引:2  
对虾是海水养殖的主导品种之一,在我国海洋农业中发挥重要作用。自20世纪90年代以来,白斑综合征频繁暴发,严重阻碍了对虾养殖业的健康发展。经过十几年的不懈努力,对虾白斑综合征暴发机制及其免疫防控研究发展迅速,取得了重要进展。简述了对虾白斑综合征和对虾抗病毒免疫的基本特征,总结了运用多种免疫学原理和技术途径在对虾中进行白斑综合征疫病防控所取得的主要成果,并概括了应用不同策略进行免疫防控的保护效果,以期为对虾养殖业的健康持续发展提供参考。  相似文献   

4.
白斑综合症病毒(white spot syndrome virus,WSSV)是危害对虾的主要病原,给全球水产养殖业带来了巨大经济损失,但至今仍未发现有效的防治方法。研究病毒与宿主的相互作用对于深入了解病毒的致病机理和宿主的免疫机制,从而寻找合适的抗病毒措施具有非常重要的理论意义和实际应用价值。该文主要介绍了蛋白质相互作用的研究方法,以及WSSV病毒蛋白之间、病毒—宿主蛋白之间和宿主蛋白之间相互作用的研究进展,为有效地防治WSSV及相关科研提供参考。  相似文献   

5.
对虾白斑综合征杆状病毒同源性比较的研究   总被引:4,自引:1,他引:3  
比较我国沿海不同海域对虾白斑综合征杆状病毒三个分离株即唐海分离株(渤海湾),宁波分离株(东海),深圳分离株(南海)的同源性。三个WSSV分离株基因组的限制性内切酶(Sac I,Hind III,Pst I)酶切多态(RFLP)以及病毒结构蛋白图谱完全一致,证实造成我国从南至北对虾爆发性流行病的对虾白斑杆状病毒为同一种病毒。利用高保真Taq酶,分别以报道的日本对虾杆状病毒(RV-PJ=PRDV),斑节对虾白斑综合征杆状病毒(WSBV=PmNOBIII)基因组核酸片段特异性引物进行PCR扩增,结果均能从中国对虾白斑杆状病毒(WSSV)基因组中扩增得到相应大小的PCR产物,扩增产物序列分析表明中国对虾白斑杆状病毒(WSSV)与斑节对虾白斑综合征杆状病毒(WSBV=PmNOBIII),日本对虾杆状病毒(RV-PJ=PRDV)同源率分别为100%与97%,其结果为证实亚洲及太平洋地区对虾白斑综合征杆状病毒为同一种病毒或同一种病毒的不同株系提供了证据。  相似文献   

6.
康桦华  陆承平 《病毒学报》2007,23(6):490-493
对虾白斑综合征病毒(White spot syndromevirus,WSSV)是对虾养殖的主要病原之一,它是目前发现的基因组最大的动物病毒,为环状双链DNA病毒[1,2],全基因组序列分析结果显示,对虾白斑综合征病毒和其他杆状病毒相差甚远,最新病毒分类报告已将该病毒划归新建立的线头病毒科(Nima-viridae)白斑病毒属(Whispovirus)[3,4]。目前Gen-Bank公布有3个版本的WSSV全序列[1,2],其基因组大小的测定结果相差较大。不同的WSSV毒株可能在形态结构、理化性质上无法区分,但病毒基因组限制酶切片段长度多态性(RFLP)可以将之区分开来,Marks等[6,7]通过计…  相似文献   

7.
一种改良的对虾白斑综合征病毒的提纯技术   总被引:8,自引:2,他引:6  
对虾白斑综合征病毒(White spot syndrome virus,WSSV)是对虾养殖业的主要病原,自1992年以来一直严重影响对虾的产量和质量,造成巨大的经济损失.  相似文献   

8.
白斑综合征自上世纪90年代初在水产养殖业中爆发以来,其病原体白斑综合征病毒的研究一直在深入开展,特别是WSSV结构蛋白的功能学研究尤为广泛,其主要方向集中在病毒囊膜蛋白对虾体的免疫保护上,并取得了显著的保护效果。从利用病毒囊膜蛋白作为亚单位疫苗免疫虾体、利用囊膜蛋白对应抗体保护虾体、构建囊膜蛋白基因核酸疫苗和利用RNAi干扰技术保护虾体等四个方面,对当前WSSV囊膜蛋白在对虾免疫保护中的应用进行了概述,并对其应用前景作一展望,旨在为及早开发出有效防治白斑综合征疾病的技术途径提供借鉴参考。  相似文献   

9.
比较我国沿海不同海域对虾白斑综合征杆状病毒三个分离株:即唐海分离株(渤海湾)、宁波分离株(东海),深圳分离株(南海)的同源性。三个WSSV分离株基因组的限制笥内切酶(Sac Ⅰ,HindⅢ,PstⅠ)酶切多态(RFLP)以及病毒结构蛋白图谱完全一致,证实造成我国从南对北对虾爆发性流行病的对虾白斑杆状病毒为同一种病毒。利用高保真Taq酶,分别以报道的日本对虾杆状病毒(RV-PJ-PRDV),斑节对虾白斑综合征杆状病毒(WSBV-PmNOBⅢ)基因组核酸片段特异性引物进行PCR扩增,结果均能从中国一杆状病毒(WSSV)基因组中扩增得到相应大小的PCR产物,扩增产物序列分析表明中国对虾白斑杆状病毒(WSSV)与斑节对虾白斑综合征杆状病毒(WSBV-PmNOBⅢ),日本对虾相状RV-PJ=PRDV)同源率分别为100%与97%,其结果为证实亚洲及太平洋地区对虾白斑综合征杆状病毒为同一种病毒或同一种病毒的不同株系提供了依据。  相似文献   

10.
对虾白斑综合症病毒(White spot syndrome virus,WSSV)是养殖对虾的一个主要病原,也是目前发现的基因组最大的动物病毒(基因组约290kDa,双链环状)。WSSV病毒粒子为卵形杆状,外被囊膜,囊膜在尾部延伸成一长尾。它不仅能感染对虾,还能感染其它淡水及海水甲壳类。养殖对虾被感染后,3—10d内累积死亡率可达100%,给对虾养  相似文献   

11.
Double-stranded RNA (dsRNA) is a common by-product of viral infections and a potent inducer of innate antiviral immune responses in vertebrates. In the marine shrimp Litopenaeus vannamei, innate antiviral immunity is also induced by dsRNA in a sequence-independent manner. In this study, the hypothesis that dsRNA can evoke not only innate antiviral immunity but also a sequence-specific antiviral response in shrimp was tested. It was found that viral sequence-specific dsRNA affords potent antiviral immunity in vivo, implying the involvement of RNA interference (RNAi)-like mechanisms in the antiviral response of the shrimp. Consistent with the activation of RNAi by virus-specific dsRNA, endogenous shrimp genes could be silenced in a systemic fashion by the administration of cognate long dsRNA. While innate antiviral immunity, sequence-dependent antiviral protection, and gene silencing could all be induced by injection of long dsRNA molecules, injection of short interfering RNAs failed to induce similar responses, suggesting a size requirement for extracellular dsRNA to engage antiviral mechanisms and gene silencing. We propose a model of antiviral immunity in shrimp by which viral dsRNA engages not only innate immune pathways but also an RNAi-like mechanism to induce potent antiviral responses in vivo.  相似文献   

12.
Invertebrates, including shrimp, have developed very complicated innate immune system against pathogens. Much work has been performed on the innate immunity of shrimp, including immune recognition, signal transduction, effector molecules and antiviral responses due to its great economic value. Pattern recognition is the first step of innate immunity. Pattern recognition receptors (PRRs) sense the presence of infection and activate immune responses. The studies on shrimp PRRs revealed the recognition mechanism of shrimp at a certain degree. To date, 11 types of pattern recognition receptors (PRRs) have been identified in shrimp, namely, β-1,3-glucanase-related proteins, β-1,3-glucan-binding proteins, C-type lectins, scavenger receptors, galectins, fibrinogen-related proteins, thioester-containing protein, Down syndrome cell adhesion molecule, serine protease homologs, trans-activation response RNA-binding protein and Toll like receptors. A number of PRRs have been functionally studied and have been found to have different binding specificities and immune functions. The present review aims to summarize the current knowledge on the PRRs of shrimp.  相似文献   

13.
Zhi B  Wang L  Wang G  Zhang X 《PloS one》2011,6(9):e24955
Vertebrates achieve adaptive immunity of all sorts against pathogens through the diversification of antibodies. However the mechanism of invertebrates' innate immune defense against various pathogens remains largely unknown. Our study used shrimp and white spot syndrome virus (WSSV) to show that PjCaspase, a caspase gene of shrimp that is crucial in apoptosis, possessed gene sequence diversity. At present, the role of gene sequence diversity in immunity has not been characterized. To address this issue, we compared the PjCaspase gene sequence diversities from WSSV-free and WSSV-resistant shrimp. The sequence analysis indicated that the PjCaspase gene from the WSSV-resistant shrimp contained a special fragment, designated as fragment 3 (221-229 aa). Down-regulation or overexpression of the PjCaspase gene containing fragment 3 led to significant inhibition or enhancement of virus-induced apoptosis, but had no effect on bacterium challenge. We found evidence that the silencing or overexpression of this gene led to a 7-fold increase or 11-fold decrease of WSSV copies, respectively. Our results suggested that the PjCaspase gene containing fragment 3 provided the molecular basis for the antiviral defense of shrimp. This study represented the first report of the role of gene sequence diversity in the immunity of an invertebrate against virus infection. Invertebrates may employ this gene sequence diversity as a system to avoid pathogen interference with their immune response.  相似文献   

14.
The global shrimp aquaculture has been consistently beset by diseases that cause severe losses in production. To fight various harmful pathogens, the enhanced shrimp immunity by immunostimulants would play key roles against the invading pathogens. In aquaculture, however, the target proteins/genes which can be used for the screening of immunostimulants are very limited. Based on our previous study, in the present study, the shrimp Ran protein, which was required in shrimp antiviral phagocytosis, was used as the target protein to screen for immunostimulants. The GTPase activity assays showed that the IL-4 and lysophosphatidylcholine molecules could enhance the activity of Ran protein, suggesting that the two molecules might function in phagocytosis. When the IL-4 and lysophosphatidylcholine were respectively injected into shrimp, the results indicated that the two molecules enhanced the hemocytic phagocytosis against white spot syndrome virus (WSSV), suggesting that they improved the activity of phagocytosis through the activation of the Ran protein. It was evidenced that the enhancement of phagocytosis activity effectively inhibited the WSSV infection in shrimp, which further led to the decrease of mortalities of WSSV-infected shrimp. Therefore, our study presented a novel strategy for the screening of immunostimulants by using the key proteins in immune responses of aquatic organisms as the target proteins, which would be very helpful for the development of efficient approaches to prevent the aquatic organisms from pathogen infections.  相似文献   

15.
Epidemic diseases cost large amount of economic loss in the shrimp aquaculture. To control the epidemic diseases, it is a very efficient approach to enhance the shrimp immunity by immunostimulants. In aquaculture, however, the applications of the available immunostimulants are very limited due to the lack of information about the roles of these immunostimulants in animal immunity. In the present study, a caspase protein (PjCaspase), required in shrimp antiviral apoptosis, was used as the target protein to screen for small molecules which would enhance the shrimp immunity. Based on screening using the EGFP-PjCaspase fusion protein in insect cells, four small molecules could enhance the activity of PjCaspase protein. Among them, IL-2 and evodiamine were further evidenced to enhance the apoptotic activity of shrimp hemocytes in vivo, suggesting that the small molecules improved the activity of apoptosis through the activation of the PjCaspase protein. The results indicated that the enhancement of apoptotic activity effectively inhibited the white spot syndrome virus (WSSV) infection in shrimp, which further led to the decrease of mortalities of WSSV-infected shrimp. Therefore, our study, for the first time, presented that the strategy using the key proteins in immune responses of aquatic organisms as the target proteins was a very efficient approach for the screening of immunostimulants to prevent the aquatic organisms from pathogen infections.  相似文献   

16.
Shrimp, like other invertebrates, relies solely on its innate immune system, to combat invading pathogens. The invertebrate immune system has ancient origins that involve cellular and humoral responses. The clotting system of the humoral immune response is the first line of defense against pathogens and also serves to prevent blood loss during injury and wound healing. Tranglutaminase and clotting protein are molecules involved in the blood clotting system of crayfish and shrimp. Studies have shown that the shrimp clotting system is linked with the activation of antimicrobial peptides, similar to that of the horseshoe crab. Unlike the horseshoe crab and crayfish blood coagulation which are well studied systems, blood clotting in shrimp remains poorly understood. Here we review the shrimp clotting system and its involvement in innate immunity.  相似文献   

17.
18.
The present study investigates the protection of shrimp Penaeus monodon against white spot syndrome virus (WSSV) using antiviral plant extract derived from Cyanodon dactylon and the modulation of the shrimp non-specific immunity. To determine the antiviral activity, the shrimp were treated by both in vitro (intramuscular injection) and in vivo (orally with feed) methods at the concentration of 2mg per animal and 2% of the plant extract incorporated with commercially available artificial pellet feed, respectively. The antiviral activity of C. dactylon plant extract was confirmed by PCR, bioassay and Western blot analysis. In the present study, anti-WSSV activity of C. dactylon plant extract by in vivo and in vitro methods showed strong antiviral activity and the immunological parameters such as proPO, O(2)(-), NO, THC and clotting time were all significantly (P<0.05) higher in the WSSV-infected shrimp treated with plant extract when compared to control groups. These results strongly indicate that in vivo and in vitro administration of C. dactylon plant extract enhances immunity of the shrimp. Based on the present data and the advantages of plant extract available at low price, we believe that oral administration of C. dactylon plant extract along with the pellet feed is a potential prophylactic agent against WSSV infection of shrimp.  相似文献   

19.
Argonaute (Ago) protein, the central component of the RNA interference (RNAi) pathway, plays important roles in host innate antiviral immunity. Most organisms harbor a large number of different Ago proteins and isoforms; however, the roles of Ago isoforms in immune defense against pathogens remain unclear. In the present study, three Argonaute-1 (Ago1) isoforms, termed Ago1A, Ago1B, and Ago1C, were found in Marsupenaeus japonicus shrimp. Quantitative real-time PCR (polymerase chain reaction) revealed that isoforms Ago1A and Ago1B containing an insertion sequence in the PIWI domain, were significantly up-regulated in lymphoid organ and hemolymph, and also upon white spot syndrome virus (WSSV) challenge, indicating the involvement of Ago1A and Ago1B in antiviral immunity. The results showed that silencing of Ago1A with a sequence-specific siRNA led to a significant increase of WSSV loads. It was revealed that knockdown of Ago1B mRNA by 37–70% resulted in higher virus loads in shrimp. However, upon silencing Ago1B by more than 85%, a two-fold increase in Ago1A mRNA was observed but viral load was the same as untreated controls challenged with WSSV, suggesting that the simultaneous up-regulation of Ago1A might compensate for the loss of Ago1B. These data indicated that Ago1A played more important roles in the antiviral immune response than Ago1B. The simultaneous inhibition of Ago1A and Ago1B resulted in a greater increase in viral loads than Ago1A or Ago1B alone, indicating that Ago1A and Ago1B isoforms were involved in shrimp antiviral immunity. It was revealed that Ago1C had no effect on virus infection. Therefore, the current study presented the first report on the contribution of Ago isoforms in the invertebrate defense against virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号