首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal melanocytes (MC) synthesise melanin in response to ultraviolet radiation (UVR). The mechanisms mediating the UV-induced activation of melano-genesis are unknown but since UVR induces turnover of membrane phospholipids generating prostaglandins (PGs) and other products, it is possible that one of these might provide the activating signal. We have examined the effects of prostaglandins (PGs) E1, E2, D2, F, and di-acyl glycerol upon the UV-induced responses of cultured human MC and the Cloudman S91 melanoma cell line. The PGs had little effect on unirradliated cells and did not alter the response to UVR in either human MC or S91 melanoma cells. However, a synthetic analogue of di-acyl glycerol, 1-oleyl 2-acetyl glycerol (OAG), caused a significant (P<0.0001), dose-related augmentation of melanin content both in human MC (seven-fold) and S91 cells (three-fold). UVR caused a significant augmentation of the OAG-induced melanognesis of both human MC and S91 cells. Since OAG is known to activate protein kinase C, it was possible that the observed modulation of the UVR signal could be via that pathway. Di-octanoyl glycerol, another di-acyl glycerol, which activates kinase C, caused a small (70%) increase in melanogenesis in MC which was not altered by UVR. However, 12-0 tetradecanoyl phorbol 13-acetate (TPA), a potent activator of protein kinase C, had no significant effect on either basal or UV-induced melanin synthesis in either cell type. These data suggest that the UV-induced signal activating melanogenesis could be mediated by di-acyl glycerol. Furthermore, they imply that the signal is transduced via an alternative, pathway that might be independent of protein kinase C.  相似文献   

2.
3.
α-黑素细胞刺激素(α-MSH)和lpa-miR-nov-66在羊驼黑色素细胞产生黑色素过程中均起重要的调控作用,但二者之间的关系尚未报道.本研究在体外培养的羊驼黑色素细胞中通过转染lpamiR-nov-66和添加α-MSH处理,用实时定量PCR和Western印迹检测黑色素细胞内基因表达水平,ELISA法检测c AMP和cGMP的产量,RTCA实时无标记细胞功能分析黑色素细胞增殖以及紫外分光光度法检测黑色素产量,证实二者在调控羊驼黑色素细胞产生黑色素颗粒过程中的关系.结果显示,与单纯α-MSH处理相比,lpa-miR-nov-66转染结合α-MSH处理组中,小眼转录因子(MITF)和酪氨酸酶(TYR)在转录水平和翻译水平的表达均降低,而酪氨酸酶相关蛋白2(TYRP2)在转录和翻译水平的表达均升高;cGMP的产量升高,cAMP的产量下降;黑色素细胞增殖没有显著变化;黑色素细胞内黑色素产量下降.与单纯转染lpa-miR-nov-66相比,lpa-miR-nov-66转染结合α-MSH处理组中,MITF、TYR和TYRP2在转录水平和翻译水平的表达均升高;cGMP的产量下降,cAMP的产量升高;黑色素细胞增殖没有显著变化;黑色素细胞内黑色素产量升高.上述结果证明,lpa-miR-nov-66通过调控羊驼黑色素细胞中毛色形成的c AMP路径,抑制α-MSH对黑色素细胞产生黑色素的促进作用.  相似文献   

4.
Different skin colour among individuals is determined by the varying amount and types of melanin pigment. Melanin is produced in melanocytes, a type of dendritic cell located in the basal layer of the epidermis, through the process of melanogenesis. Melanogenesis consists of a series of biochemical and enzymatic reactions catalysed by tyrosinase and other tyrosinase-related proteins, leading to the formation of two types of melanin, eumelanin and pheomelanin. Melanogenesis can be regulated intrinsically by several signalling pathways, including the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), stem cell factor (SCF)/c-kit and wingless-related integration site (Wnt)/β-catenin signalling pathways. Ultraviolet radiation (UVR) is the major extrinsic factor in the regulation of melanogenesis, through the generation of reactive oxygen species (ROS). Antioxidants or antioxidant systems, with the ability to scavenge ROS, may decrease melanogenesis. This review focuses on the two main cellular antioxidant systems, the thioredoxin (Trx) and glutathione (GSH) systems, and discusses their roles in melanogenesis. In the Trx system, high levels/activities of thioredoxin reductase (TrxR) are correlated with melanin formation. The GSH system is linked with regulating pheomelanin formation. Exogenous addition of GSH has been shown to act as a depigmenting agent, suggesting that other antioxidants may also have the potential to act as depigmenting agents for the treatment of human hyperpigmentation disorders.  相似文献   

5.
The skin pigment melanin is produced in melanocytes in highly specialized organelles known as melanosomes. Melanosomes are related to the organelles of the endosomal/lysosomal pathway and can have a low internal pH. In the present study we have shown that melanin synthesis in human pigment cell lysates is maximal at pH 6.8. We therefore investigated the role of intramelanosomal pH as a possible control mechanism for melanogenesis. To do this we examined the effect of neutralizing melanosomal pH on tyrosinase activity and melanogenesis in 11 human melanocyte cultures and in 3 melanoma lines. All melanocyte cultures (9 of 9) from Caucasian skin as well as two melanoma cell lines with comparable melanogenic activity showed rapid (within 24 h) increases in melanogenesis in response to neutralization of melanosomal pH. Chemical analysis of total melanin indicated a preferential increase in eumelanin production. Electron microscopy revealed an accumulation of melanin and increased maturation of melanosomes in response to pH neutralization. In summary, our findings show that: (i) near neutral melanosomal pH is optimal for human tyrosinase activity and melanogenesis; (ii) melanin production in Caucasian melanocytes is suppressed by low melanosomal pH; (iii) the ratio of eumelanin/phaeomelanin production and maturation rate of melanosomes can be regulated by melanosomal pH. We conclude that melanosomal pH is an essential factor which regulates multiple stages of melanin production. Furthermore, since we have recently identified that pink locus product (P protein) mediates neutralization of melanosomal pH, we propose that P protein is a key control point for skin pigmentation. We would further propose that the wide variations in both constitutive and facultative skin pigmentation seen in the human population could be associated with the high degree of P-locus polymorphism.  相似文献   

6.
黑色素生成信号通路研究进展   总被引:3,自引:0,他引:3  
  相似文献   

7.
Epidermal melanocytes are skin cells specialized in melanin production. Activation of the melanocortin 1 receptor (MC1R) on melanocytes by α-melanocyte-stimulating hormone (α-MSH) induces synthesis of the brown/black pigment eumelanin that confers photoprotection from solar UV radiation (UVR). Contrary to keratinocytes, melanocytes are slow proliferating cells that persist in the skin for decades, in an environment with high levels of UVR-induced reactive oxygen species (ROS). We previously reported that in addition to its role in pigmentation, α-MSH also reduces oxidative stress and enhances the repair of DNA photoproducts in melanocytes, independent of melanin synthesis. Given the significance of ROS in carcinogenesis, here we investigated the mechanisms by which α-MSH exerts antioxidant effects in melanocytes. We show that activation of the MC1R by α-MSH contributes to phosphorylation of p53 on serine 15, a known requirement for stabilization and activation of p53, a major sensor of DNA damage. This effect is mediated by the cAMP/PKA pathway and by the activation of phosphoinositide 3-kinase (PI3K) ATR and DNA protein kinase (DNA-PK). α-MSH increases the levels of 8-oxoguanine DNA glycosylase (OGG1) and apurinic apyrimidinic endonuclease 1 (APE-1/Ref-1), enzymes essential for base excision repair. Nutlin-3, an HDM2 inhibitor, mimicked the effects of α-MSH resulting in reduced phosphorylation of H2AX (γ-H2AX), a marker of DNA damage. Conversely, the p53 inhibitor pifithrin-α or silencing of p53 abolished the effects of α-MSH and augmented oxidative stress. These results show that p53 is an important target of the downstream MC1R signaling that reduces oxidative stress and possibly malignant transformation of melanocytes.  相似文献   

8.
9.
In vitro melanocyte-stimulating hormone (MSH) stimulates melanogenesis in some, but not all, melanocytes and melanoma cells. In an attempt to explain this variation in response to αMSH, we examined cyclic adenosine monophosphate (cAMP) accumulation, tyrosinase activity, and melanin production in primary (1°) murine B16 melanoma cells and in two B16 cell lines (B16 F1 and B16 F10) that are known to respond to αMSH. In vivo all three B16 melanoma cell types produced pigmented tumours. In vitro αMSH increased tyrosinase activity and melanin content in the F1 and F10 cells but not in the B16 1° cells. αMSH, however, increased cAMP production in all three cell types, confirming that the inability of B16 1° cells to produce melanin in response to αMSH is not due to a lack of αMSH receptors or cAMP response to αMSH. Further, we present evidence for a separate pathway of melanogenesis that is independent of cAMP as calmodulin antagonists, which do not elevate cAMP, increased tyrosinase activity, and melanin production in both 1° and F1 cells.  相似文献   

10.
In vitro melanocyte-stimulating hormone (MSH) stimulates melanogenesis in some, but not all, melanocytes and melanoma cells. In an attempt to explain this variation in response to alpha MSH, we examined cyclic adenosine monophosphate (cAMP) accumulation, tyrosinase activity, and melanin production in primary (1 degree) murine B16 melanoma cells and in two B16 cell lines (B16 F1 and B16 F10) that are known to respond to alpha MSH. In vivo all three B16 melanoma cell types produced pigmented tumours. In vitro alpha MSH increased tyrosinase activity and melanin content in the F1 and F10 cells but not in the B16 1 degree cells. alpha MSH, however, increased cAMP production in all three cell types, confirming that the inability of B16 1 degree cells to produce melanin in response to alpha MSH is not due to a lack of alpha MSH receptors or cAMP response to alpha MSH. Further, we present evidence for a separate pathway of melanogenesis that is independent of cAMP as calmodulin antagonists, which do not elevate cAMP, increased tyrosinase activity, and melanin production in both 1 degree and F1 cells.  相似文献   

11.
12.
基因表达谱显示,绵羊角蛋白2(keratin2, Krt2)的mRNA在不同毛色皮肤的表达不同,暗示Krt2 基因可能对皮肤黑色素生成有一定的影响。为探索角蛋白2对体外培养的羊驼皮肤黑色素细胞黑色素生成的影响,首先采用PCR扩增产物测序,结合DNAMAN 软件比对分析发现,羊驼Krt2 编码序列(cDNA)与NCBI公布的人KRT2高度同源(91%);将人KRT2添加于培养的羊驼皮肤黑色素细胞,观察人KRT2对羊驼皮肤黑色素细胞黑色素的生成作用。免疫组织化学显示,外源性的人KRT2处理羊驼皮肤黑色素细胞72 h后,黑色素细胞的细胞质中Krt2表达增强。实时定量PCR及Western 印迹实验揭示,与胎牛血清清蛋白处理的羊驼皮肤黑色素细胞比较,1 ng/mL、10 ng/mL和100 ng/mL人KTR2处理的羊驼皮肤黑色素细胞酪氨酸酶(Tyr)、酪氨酸相关蛋白-1(Tyrp1)、小眼畸形相关转录因子(Mitf)基因表达明显上调(P <0.05);尤其在添加10 ng/mL KTR2的细胞中,3个基因的mRNA相对表达水平升高尤其显著,分别是对照细胞的4倍、10倍和12.9倍(P<0.01),蛋白质相对表达水平分别是对照细胞的2倍、2.1倍和1.7倍(P<0.01)。分光光度法测量A490结果证明,1 ng/mL、10 ng/mL和100 ng/mL人KTR2处理的羊驼皮肤黑色素细胞产生的黑色素含量分别是对照细胞的1.3倍(P <0.05)、1.8倍(P <0.01)和1.5倍(P <0.05)。上述结果说明,人KTR2处理可通过刺激羊驼皮肤黑色素细胞黑色素合成相关信号通路,促进黑色素的合成。  相似文献   

13.
Interactions between beta-melanotropin (MSH), interleukin 1-a (IL-1), and ultraviolet light (UV) were examined in Cloudman S91 mouse melanoma and RHEK human squamous carcinoma cell lines. The following points were established: 1) both cell lines produced IL-1 and their production was stimulated by exposure of the cells to UV; 2) both cell lines possessed high affinity binding sites for MSH, and their ability to bind MSH was modulated by IL-1; 3) IL-1 exhibited both stimulatory and inhibitory effects on MSH binding to Cloudman cells; and 4) the stimulatory effect of IL-1 on MSH binding to melanoma cells was reflected in enhanced cellular responsiveness to MSH regarding tyrosinase activity (E.C. 1.14.18.1) and melanin content. The findings raise the possibility that interactions between keratinocytes and melanocytes may be regulated by IL-1 and MSH, and suggest a possible mechanism for stimulation of cutaneous melanogenesis by solar radiation: enhancement of MSH receptor activity by induction of IL-1.  相似文献   

14.
Exposure of human skin to low doses of solar UV radiation (UVR) causes increased pigmentation, while chronic exposure is a powerful risk factor for skin cancers. The mechanisms mediating UVR detection in skin, however, remain poorly understood. Our recent studies revealed that UVR activates a retinal-dependent G protein-coupled signaling pathway in melanocytes. This phototransduction pathway leads to the activation of transient receptor potential A1 (TRPA1) ion channels, elevation of intracellular calcium (Ca2+) and rapid increase in cellular melanin content. Here we report that physiological doses of solar-like UVR elicit a retinal-dependent membrane depolarization in human epidermal melanocytes. This transient depolarization correlates with delayed inactivation time of the UVR-evoked photocurrent and with sustained Ca2+ responses required for early melanin synthesis. Thus, the cellular depolarization induced by UVR phototransduction in melanocytes is likely to be a critical signaling mechanism necessary for the protective response represented by increased melanin content.  相似文献   

15.
Two pigmentation related genes have recently been cloned which map to the brown (b) and albino (c) loci of mice; these loci influence the quality and quantity, respectively, of melanin produced by melanocytes. Both these gene products are biochemically similar and have extensive amino acid sequence similarity to each other and to lower forms of tyrosinase (EC 1.14.18.1), a copper binding enzyme responsible for melanin production. In order to characterize the catalytic activities of these molecules, we have synthesized peptides and prepared antibodies to them which specifically recognize the gene products in question. By use of immune affinity purification protocols, we have isolated the proteins encoded by the brown and albino loci and have determined that both have the catalytic functions ascribed to tyrosinase, i.e. hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to DOPAquinone. These are the critical reactions to melanogenesis since melanin pigment can be spontaneously produced from those products. The specific activity of the albino locus encoded product is considerably higher than that of the protein encoded by the brown locus, although the latter protein is present in higher quantity in melanocytes than is the protein encoded by the albino locus. These results are surprising since it was anticipated that tyrosinase was the product of single gene locus, and suggest that regulation of melanogenesis in mammals is controlled at the enzymatic level by several different gene products.  相似文献   

16.
17.
Melanocytes are the melanin-producing cells by melanogenesis, and the pigment melanin is primarily responsible for the color of skin. These cells contain dendrites that are in close contact with neighboring keratinocytes. Keratinocytes produce and secrete factors that regulate the proliferation and melanogenesis of melanocytes in vitro. Therefore, adopting only melanocyte pure culture may not clearly reflect the skin physiology in vivo. In this study, we applied a two-culture model using melanocytes and keratinocytes from human skin, such as melanocyte pure culture and melanocyte co-culture with keratinocyte. And then, there was compared the responses of melanocytes under different culture conditions (treatment with arbutin, MSH-α and UV-B irradiation). The results show that there was no significant difference in melanocyte proliferation and melanogenesis between arbutin and MSH-α treatment. However, the co-culture model was more stable than the pure culture model in terms of melanocyte proliferation and melanogenesis upon UV-B irradiation. Therefore, the co-culture model was superior to the pure culture as a useful method for the study of melanocytes and epidermal melanin unit.  相似文献   

18.
Developing embryos of the spotted salamander, Ambystoma maculatum, exposed to ultraviolet radiation (UVR; 290-400 nm) in the laboratory show a significant sensitivity to UVB (290-320 nm) radiation. Embryos in laboratory experiments exhibited significant DNA damage during exposures to UVR despite a significant increase in the production of the protective pigment melanin in response to UVR exposure. DNA damage occurs as a result of both the direct effects of exposure to UVR, and the indirect effects are mediated by the production of reduced oxygen intermediates. The production of reactive oxygen species initiates the expression of p53/p73 that leads to either DNA repair or apoptosis. When similar experiments are conducted on salamander embryos exposed to solar UVR in vernal pools, the embryos show significantly less sensitivity and higher survivorship. The differences between laboratory and field experiments are a result of the attenuation of UVR caused by the accumulation of dissolved organic carbon within the pools of these wooded areas. These findings suggest that northeastern populations of spotted salamanders are sensitive to UVR but are not significantly affected by present-day irradiances of UVR in the field. These results do suggest that continued decreases in stratospheric ozone over temperate latitudes have the potential to affect spotted salamanders in their natural habitats.  相似文献   

19.
Excessive ultraviolet radiation (UVR) exposure induces erythema, mediated in part by prostaglandin-E2 (PGE2). While keratinocytes are a major PGE2 source, epidermal melanocytes (EM) also express PGE2-production machinery. It is unclear whether EM-produced PGE2 contributes to UVR-induced skin inflammation, and whether this is correlated with melanogenesis. Epidermal melanocytes were cultured from skin phototype-1 and -4 donors, followed by assessment of PGE2 production and melanogenesis. Epidermal melanocytes expressed cytoplasmic phospholipase-A2, cyclooxygenase-1, cytoplasmic prostaglandin-E synthase and microsomal prostaglandin-E synthase-1, -2. Epidermal melanocytes produced PGE2 under basal conditions, which increased further after arachidonic acid stimulation. Epidermal melanocytes expressed cyclooxygenase-2 (COX-2) mRNA and a selective COX-2 inhibitor (NS-398) reduced PGE2 production. Ultraviolet B-induced PGE2 production was positively correlated with skin phototype-1, despite variability between individual EM donors. By contrast, there was no correlation between PGE2 production by EM and their melanogenic status. Thus, EM may contribute to UVR-induced erythema, with role of donor skin phototype more important than their melanogenic status.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号