首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Yan H  Zhong X  Jiang S  Zhai C  Ma L 《Biotechnology letters》2011,33(8):1683-1688
Artificial microRNA (amiRNA) technology is a novel tool in reverse genetic research for discovering or validating gene functions in plants. A convenient cloning strategy has been developed to construct plant amiRNA vectors based on lacO reconstruction and mating-assisted, genetically-integrated cloning (MAGIC). The amiRNA precursor fragment was generated by PCR and inserted into a small donor plasmid through reconstruction of integrated lacO sequence. Blue recombinants were selected on plates containing X-gal and the efficiency of successful clones was 100%. The amiRNA expression cassette was transferred from the donor plasmid to the recipient plasmid p1301-gfp through MAGIC and an amiRNA expression plasmid was created. More than 40 plant amiRNA vectors were generated through this method, one of which was transformed into Arabidopsis thaliana and the target gene was silenced efficiently. The approach will be useful for amiRNA expression vectors construction in plants.  相似文献   

2.
Artificial microRNA (amiRNA) is a powerful tool for silencing genes in many plant species. Here we provide an easy method to construct amiRNA vectors that reinvents the Golden Gate cloning approach and features a novel system called top speed amiRNA construction (TAC). This speedy approach accomplishes one restriction-ligation step in only 5 min, allowing easy and high-throughput vector construction. Three primers were annealed to be a specific adaptor, then digested and ligated on our novel vector pTAC. Importantly, this method allows the recombined amiRNA constructs to maintain the precursor of osa-miR528 with exception of the desired amiRNA/amiRNA* sequences. Using this method, our results showed the expected decrease of targeted genes in Nicotiana benthamiana and Oryza sativa.  相似文献   

3.
Li  Ning  Yuan  Deyi  Huang  Li-Jun 《Transgenic research》2019,28(5-6):561-572

Genetic transformation of plants offers the possibility of functional characterization of individual genes and the improvement of plant traits. Development of novel transformation vectors is essential to improve plant genetic transformation technologies for various applications. Here, we present the development of a Gateway-compatible two-component expression vector system for Agrobacterium-mediated plant transformation. The expression system contains two independent plasmid vector sets, the activator vector and the reporter vector, based on the concept of the GAL4/UAS trans-activation system. The activator vector expresses a modified GAL4 protein (GAL4-VP16) under the control of specific promoter. The GAL4-VP16 protein targets the UAS in the reporter vector and subsequently activates reporter gene expression. Both the activator and reporter vectors contain the Gateway recombination cassette, which can be rapidly and efficiently replaced by any specific promoter and reporter gene of interest, to facilitate gene cloning procedures. The efficiency of the activator–reporter expression system has been assessed using agroinfiltration mediated transient expression assay in Nicotiana benthamiana and stable transgenic expression in Arabidopsis thaliana. The reporter genes were highly expressed with precise tissue-specific and subcellular localization. This Gateway-compatible two-component expression vector system will be a useful tool for advancing plant gene engineering.

  相似文献   

4.
We report the construction of two Gateway fungal expression vectors pCBGW and pGWBF. The pCBGW was generated by introducing an expression cassette, which consists of a Gateway recombinant cassette (attR1-Cmr-ccdB-attR2) under the control of fungal promoter PgpdA and a terminator TtrpC, into the multiple cloning site of fungal vector pCB1004. The pGWBF is a binary vector, which was generated from the plant expression vector pGWB2 by replacing the CaMV35S promoter with PgpdA. The pGWBF can be transformed into fungi efficiently with Agrobacterium-mediated transformation. The applicability of two newly constructed vectors was tested by generating the destination vectors pGWBF-GFP and pCBGW-GFP and examining the expression of GFP gene in Trichoderma viride and Gibberella fujikuroi, respectively. Combining with the advantage of Gateway cloning technology, pCBGW and pGWBF will be useful in fungi for large-scale investigation of gene functions by constructing the interested gene destination/expression vectors in a high-throughput way.  相似文献   

5.
6.
The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii.  相似文献   

7.
A novel and simple method for construction of recombinant adenoviruses   总被引:3,自引:0,他引:3  
Recombinant adenoviruses have been widely used for various applications, including protein expression and gene therapy. We herein report a new and simple cloning approach to an efficient and robust construction of recombinant adenoviral genomes based on the mating-assisted genetically integrated cloning (MAGIC) strategy. The production of recombinant adenovirus serotype 5-based vectors was greatly facilitated by the use of the MAGIC procedure and the development of the Adeasy™ adenoviral vector system. The recombinant adenoviral plasmid can be generated by a direct and seamless substitution, which replaces the stuff fragment in a full-length adenoviral genome with the gene of interest in a small plasmid in Escherichia coli. Recombinant adenoviral plasmids can be rapidly constructed in vivo by using the new method, without manipulations of the large adenoviral genome. In contrast to other traditional systems, it reduces the need for multiple in vitro manipulations, such as endonuclease cleavage, ligation and transformation, thus achieving a higher efficiency with negligible background. This strategy has been proven to be suitable for constructing an adenoviral cDNA expression library. In summary, the new method is highly efficient, technically less demanding and less labor-intensive for constructing recombinant adenoviruses, which will be beneficial for functional genomic and proteomic researches in mammalian cells.  相似文献   

8.
9.
Oster CJ  Phillips GJ 《Plasmid》2011,66(3):180-185
Several ligation-independent cloning methods have been developed that offer advantages for construction of recombinant plasmids at high efficiency while minimizing cloning artifacts. Here we report new plasmid vectors that use the nicking endonuclease Nt.BspQI to generate extended single stranded tails for direct cloning of PCR products. The vectors include pLacCOs1, a ColE1-derivative plasmid imparting resistance to ampicillin, which allows facile construction of lacZ translational fusions and pKanCOs1, a pSC101-derivative cloning vector that imparts resistance to kanamycin, for cloning of PCR amplicons from genomic DNA as well as from ampicillin-based plasmids. We have successfully used these plasmids to directionally clone and characterize bacterial promoters that exhibit temperature regulated expression, as well as for cloning a variety of PCR products. In all cases, constructs with the correct configurations were generated at high efficiency and with a minimal number of manipulations. The cloning vectors can also be easily modified to incorporate additional reporter genes or to express epitope-tagged gene products.  相似文献   

10.
The genome information is offering opportunities to manipulate genes, polygenic characters and multiple traits in plants. Although a number of approaches have been developed to manipulate traits in plants, technical hurdles make the process difficult. Gene cloning vectors that facilitate the fusion, overexpression or down regulation of genes in plant cells are being used with various degree of success. In this study, we modified gateway MultiSite cloning vectors and developed a hybrid cloning strategy which combines advantages of both traditional cloning and gateway recombination cloning. We developed Gateway entry (pGATE) vectors containing attL sites flanking multiple cloning sites and plant expression vector (pKM12GW) with specific recombination sites carrying different plant and bacterial selection markers. We constructed a plant expression vector carrying a reporter gene (GUS), two Bt cry genes in a predetermined pattern by a single round of LR recombination reaction after restriction endonuclease-mediated cloning of target genes into pGATE vectors. All the three transgenes were co-expressed in Arabidopsis as evidenced by gene expression, histochemical assay and insect bioassay. The pGATE vectors can be used as simple cloning vectors as there are rare restriction endonuclease sites inserted in the vector. The modified multisite vector system developed is ideal for stacking genes and pathway engineering in plants.  相似文献   

11.
Plant transgenesis often requires the use of tissue-specific promoters to drive the transgene expression exclusively in targeted tissues. Although the eukaryotic promoters are expected to stay silent in Escherichia coli, when the promoter-transgene units within the plant transformation vectors are constructed and propagated, some eukaryotic promoters have been reported to be active in prokaryotes. The potential activity of plant promoter in E. coli cells should be considered in cases of expression of proteins that are toxic for host cells, environmental risk assessment or the stability in E. coli of plant vectors for specific Cre/loxP applications. In this study, DNA fragments harbouring four embryo- and/or pollen-specific Arabidopsis thaliana promoters were investigated for their ability to drive heterologous gene expression in E. coli cells. For this, they were fused to gfp:gus reporter genes in the pCAMBIA1304 vector. Although BPROM, bacterial sigma70 promoter recognition program identified several sequences with characteristics similar to bacterial promoters including -10 and -35 sequences in each of tested fragments, the experimental approach showed that only one promoter fragment was able to drive relatively strong- and one promoter fragment relatively weak-GUS expression in E. coli cells. Remaining two tested promoters did not drive any transgene expression in bacteria. Our results also showed that cloning of a shorter plant promoter sequence into vectors containing lacZ α-complementation system can increase the probability of gene expression driven by upstream located lac promoter. This should be considered when cloning of plant expression units, the expression of which is unwanted in E. coli.  相似文献   

12.
13.
Artificial microRNA (amiRNA) has recently become an important RNA interference (RNAi) technology for gene therapy and gene function studies. Here nine expression strategies were employed to construct plasmid vectors expressing amiRNA (amiR-Fluc) against firefly luciferase (Fluc). Our results indicate that all nine vectors can successfully produce mature amiR-Fluc and specifically suppress the expression of Fluc, although the RNAi efficiency in different mammalian cells displays obvious differences. Among these nine vectors, three can efficiently co-express DsRed reporter gene linked with amiR-Fluc cassette. Moreover, the recommended number of concatenated amiRNAs in a multi-amiRNA expression vector should not be more than four, and the relative position of an amiRNA in the multi-amiRNA expression vector has no apparent influence on its RNAi activity. In summary, all these results described here provide valuable information for the rational design and application of amiRNA expression vector.  相似文献   

14.
The β-globin matrix attachment regions (MARs) were inserted into the 5′-site of the eukaryotic expression vector cassette and DNA fragments 350 and 750 bp in length were inserted into the site to generate expression vectors with varying distances between the expression cassette and MAR. The vectors containing MARs increased chloramphenicol acetyltransferase (CAT) expression levels compared to the negative control vector lacking the MAR; the highest expression increase was 3.8-fold. A greater MAR-transgene distance (750 bp) correlated with a greater increase in transgene expression when compared to the control vector that lacked separation between the MAR and transgene. CAT gene copy numbers were higher in cells transformed with the vector possessing a smaller MAR-transgene distance (350 bp) than in cells belonging to the other three groups. However, MAR-induced transgene expression levels did not exhibit a direct relationship with gene copy number.  相似文献   

15.
16.
Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an “ultra-low background DNA cloning system” on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Ampr). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Ampr 5′ UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Ampr 3′ UTR. This cassette allowed conversion of the Ampr-containing vector into the yeast/E. coli shuttle vector through use of the Ampr sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific “origins of replication” to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.  相似文献   

17.
18.
The large capacity of pseudorabies virus (PRV) for foreign DNA and broad host range make it a prospective tool for the preparation of vaccines and agents of gene and tumour therapy. Here we introduced a cloning strategy that facilitates construction of recombinant PRV?CBAC vectors based on mating-assisted genetically integrated clone (MAGIC). The target gene was cloned into a small conditionally replicating donor plasmid, followed by shuffling to a recipient PRV?CBAC plasmid in vivo of Escherichia coli through MAGIC. The average efficiency of successful clones was 89%. Moreover, permanent integration of unwanted sequences was avoided.  相似文献   

19.
Summary Agrobacterium strains harbouring the T-region and the virulence-region of the Ti plasmid on separate replicons still display efficient T-DNA transfer to plants. Based on this binary vector strategy we have constructed T-region derived gene vectors for the introduction of foreign DNA into plants. The vectors constructed can replicate in E. coli, thus the genetic manipulations with them can be performed with E. coli as a host. They can be transferred to Agrobacterium as a cointegrate with the wide host range plasmid R772. Their T-regions are transferred to plant cells from Agrobacterium strains conferring virulence functions.The plasmid pRAL 3940 reported here is 11.5 kb large, contains a marker to identify transformed plant cells and unique restriction sites for direct cloning of passenger DNA, flanked by the left- and right-hand border fragments of the T-region (including the 25 bp border repeats). The plasmid is free of onc-genes. Therefore, is does not confer tumorigenic traits on the transformed plant cells and mature, fertile plants can thus be regenerated from them.  相似文献   

20.
We have constructed a binary vector for Agrobacterium-mediated plant transformation, which has a multiple cloning site consisting of 13 hexanucleotide restriction sites, 6 octanucleotide restriction sites and 5 homing endonuclease sites. The homing endonuclease sites have the advantages to be extremely rare in natural sequences and to allow unidirectional cloning. We have also constructed a set of auxiliary vectors allowing the assembly of expression cassettes flanked by homing endonuclease sites. The expression cassettes assembled in these auxiliary vectors can be transferred into the binary vector with virtually no risk of cutting the vector within previously introduced sequences. This vector set is ideally suited for the construction of plant transformation vectors containing multiple expression cassettes and/or other elements such as matrix attachment regions. With this modular vector system, six different expression units were constructed in as many auxiliary vectors and assembled together in one plant transformation vector. The transgenic nature of Arabidopsis thaliana plants, transformed with this plant transformation vector, was assessed and the expression of each of the six genes was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号