首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA interference (RNAi)‐based tools are used in multiple organisms to induce antiviral resistance through the sequence‐specific degradation of target RNAs by complementary small RNAs. In plants, highly specific antiviral RNAi‐based tools include artificial microRNAs (amiRNAs) and synthetic trans‐acting small interfering RNAs (syn‐tasiRNAs). syn‐tasiRNAs have emerged as a promising antiviral tool allowing for the multi‐targeting of viral RNAs through the simultaneous expression of several syn‐tasiRNAs from a single precursor. Here, we compared in tomato plants the effects of an amiRNA construct expressing a single amiRNA and a syn‐tasiRNA construct expressing four different syn‐tasiRNAs against Tomato spotted wilt virus (TSWV), an economically important pathogen affecting tomato crops worldwide. Most of the syn‐tasiRNA lines were resistant to TSWV, whereas the majority of the amiRNA lines were susceptible and accumulated viral progenies with mutations in the amiRNA target site. Only the two amiRNA lines with higher amiRNA accumulation were resistant, whereas resistance in syn‐tasiRNA lines was not exclusive of lines with high syn‐tasiRNA accumulation. Collectively, these results suggest that syn‐tasiRNAs induce enhanced antiviral resistance because of the combined silencing effect of each individual syn‐tasiRNA, which minimizes the possibility that the virus simultaneously mutates all different target sites to fully escape each syn‐tasiRNA.  相似文献   

2.
3.
4.
5.
王健 《植物科学学报》2015,33(6):819-828
amiRNA(artificial microRNA)作为一种诱导基因发生特异性沉默的技术已在多种植物中应用,但设计出的不同amiRNAs在所转化株系中的沉默效率难以预测,因此对amiRNA载体的沉默效率进行预验证是非常必要的。本实验以丹参(Salvia miltiorrhiza)的1个MYB类转录因子基因SmPAP1的mRNA序列为amiRNA作用对象,并挑选2个经在线软件WMD3(Web MicroRNA Designer)设计的amiRNAs,分别命名为amiRNA1-SmPAP1和amiRNA2-SmPAP1,然后通过农杆菌介导将构建的2个amiRNA载体和SmPAP1过表达植物载体在烟草叶片细胞中进行瞬时共表达。结果显示,amiRNA2的表达丰度约是amiRNA1的2倍;amiRNA2对靶标SmPAP1的沉默效率约是amiRNA1的2.5倍;SmPAP1在mRNA和蛋白水平上均与相应amiRNA的表达水平呈显著负相关。因此,amiRNA在烟草细胞中的瞬时表达可快速、有效地对不同amiRNA沉默效果进行预验证,从而为后续的植物遗传转化研究提供重要参考。  相似文献   

6.
MicroRNAs (miRNAs) regulate the abundance of target mRNAs by guiding cleavage at sequence complementary regions. In this study, artificial miRNAs (amiRNAs) targeting conserved motifs of the L (replicase) gene of Watermelon silver mottle virus (WSMoV) were constructed using Arabidopsis pre-miRNA159a as the backbone. The constructs included six single amiRNAs targeting motifs A, B1, B2, C, D of E, and two triple amiRNAs targeting motifs AB1E or B2DC. Processing of pre-amiRNAs was confirmed by agro-infiltration, and transgenic Nicotiana benthamiana plants expressing each amiRNA were generated. Single amiRNA transgenic lines expressing amiR-LB2 or amiR-LD showed resistance to WSMoV by delaying symptom development. Triple amiRNA lines expressing amiR-LB2, amiR-LD and amiR-LC provided complete resistance against WSMoV, with no indication of infection 28 days after inoculation. Resistance levels were positively correlated with amiRNA expression levels in these single and triple amiRNA lines. The triple amiR-LAB1E line did not provide resistance to WSMoV. Similarly, the poorly expressed amiR-LC and amiR-LE lines did not provide resistance to WSMoV. The amiR-LA- and amiR-LB1-expressing lines were susceptible to WSMoV, and their additional susceptibility to the heterologous Turnip mosaic virus harbouring individual target sequences indicated that these two amiRNAs have no effect in vivo. Transgenic lines expressing amiR-LB2 exhibited delayed symptoms after challenge with Peanut bud necrosis virus having a single mismatch in the target site. Overall, our results indicate that two amiRNAs, amiR-LB2 and amiR-LD, of the six designed amiRNAs confer moderate resistance against WSMoV, and the triple construct including the two amiRNAs provides complete resistance.  相似文献   

7.
Plant virus‐based gene‐silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus‐induced gene‐silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene‐silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co‐agro‐inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat‐shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV‐ but not BaMV‐based vector could enhance gene‐silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA‐dependant RNA polymerase 6. The dual gene‐silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.  相似文献   

8.
Expression of artificial microRNAs (amiRNAs) in plants can target and degrade the invading viral RNA, consequently conferring virus resistance. Two amiRNAs, targeting the coding sequence shared by the 2a and 2b genes and the highly conserved 3′ untranslated region (UTR) of Cucumber mosaic virus (CMV), respectively, were generated and introduced into the susceptible tomato. The transgenic tomato plants expressing amiRNAs displayed effective resistance to CMV infection and CMV mixed with non-targeted viruses, including tobacco mosaic virus and tomato yellow leaf curl virus. A series of grafting assays indicate scions originated from the transgenic tomato plant maintain stable resistance to CMV infection after grafted onto a CMV-infected rootstock. However, the grafting assay also suggests that the amiRNA-mediated resistance acts in a cell-autonomous manner and the amiRNA signal cannot be transmitted over long distances through the vascular system. Moreover, transgenic plants expressing amiRNA targeting the 2a and 2b viral genes displayed slightly more effective to repress CMV RNA accumulation than transgenic plants expressing amiRNA targeting the 3′ UTR of viral genome did. Our work provides new evidence of the use of amiRNAs as an effective approach to engineer viral resistance in the tomato and possibly in other crops.  相似文献   

9.
In plants, the silencing efficacy of microRNAs (miRNAs) is thought to be predominantly determined by the degree of complementarity to their target genes. Here, silencing efficacy was determined for Arabidopsis miR159 and four artificial miRNAs (amiRNAs) that all target MYB33/MYB65 with analogous complementarities. As determined through complementation of a loss-of-function mir159 mutant, the amiRNAs displayed highly variable efficacies, none of which was as strong as endogenous miR159. This was despite amiRNA expression levels being many fold-higher than miR159 in wild-type. The results highlight the variable nature of miRNA silencing efficacy in plants, where it appears that factors additional to complementarity strongly impact silencing.  相似文献   

10.

Background

RNA silencing is an important mechanism for regulation of endogenous gene expression and defense against genomic intruders in plants. This natural defense system was adopted to generate virus-resistant plants even before the mechanism of RNA silencing was unveiled. With the clarification of that mechanism, transgenic antiviral plants were developed that expressed artificial virus-specific hairpin RNAs (hpRNAs) or microRNAs (amiRNAs) in host plants. Previous works also showed that plant-mediated RNA silencing technology could be a practical method for constructing insect-resistant plants by expressing hpRNAs targeting essential genes of insects.

Methodology/Principal findings

In this study, we chose aphid Myzus persicae of order Hemiptera as a target insect. To screen for aphid genes vulnerable to attack by plant-mediated RNA silencing to establish plant aphid resistance, we selected nine genes of M. persicae as silencing targets, and constructed their hpRNA-expressing vectors. For the acetylcholinesterase 2 coding gene (MpAChE2), two amiRNA-expressing vectors were also constructed. The vectors were transformed into tobacco plants (Nicotiana tabacum cv. Xanti). Insect challenge assays showed that most of the transgenic plants gained aphid resistance, among which those expressing hpRNAs targeting V-type proton ATPase subunit E-like (V-ATPaseE) or tubulin folding cofactor D (TBCD) genes displayed stronger aphicidal activity. The transgenic plants expressing amiRNAs targeting two different sites in the MpAChE2 gene exhibited better aphid resistance than the plants expressing MpAChE2-specific hpRNA.

Conclusions/Significance

Our results indicated that plant-mediated insect-RNA silencing might be an effective way to develop plants resistant to insects with piercing-sucking mouthparts, and both the selection of vulnerable target genes and the biogenetic type of the small RNAs were crucial for the effectiveness of aphid control. The expression of insect-specific amiRNA is a promising and preferable approach to engineer plants resistant to aphids and, possibly, to other plant-infesting insects.  相似文献   

11.
The adoption of hybrid rice caused the second leap in rice yield after the ‘green revolution’ and contributes substantially to food security of China and the world. However, almost all cytoplasmic male sterile lines (A lines) as females of hybrid rice have a natural deficiency of ‘panicle enclosure’, which blocks pollination between the A line and the fertility restorer line as the male (R line) of hybrid rice and decreases seed yield. In hybrid rice seed production, exogenous ‘920’ (the active ingredient is gibberellin A3) must be applied to eliminate or alleviate panicle enclosure of the A line; however, this not only increases production cost and pollutes the environment, it also decreases seed quality. In this study, we designed a transgenic approach to improve plant height and panicle exsertion of the A line to facilitate hybrid rice production and maintain the semi‐dwarf plant type of the hybrid. This approach comprising two components—artificial microRNA (amiRNA) and artificial target mimicry—can manipulate the differential expression of the endogenous Eui1 gene that is associated with rice internode elongation in the A line and the hybrid. amiRNA is a recently developed gene silencing method with high specificity, while target mimicry is a natural mechanism inhibiting the miRNA function that was also recently characterized. This approach provides a paradigm to tune the expression of endogenous genes to achieve the desired phenotype by combining amiRNA and artificial target mimicry technologies.  相似文献   

12.
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in gene regulation. They are produced through an enzyme-guided process called dicing and have an asymmetrical structure with two nucleotide overhangs at the 3′ ends. Artificial microRNAs (amiRNAs or amiRs) are designed to mimic the structure of miRNAs and can be used to silence specific genes of interest. Traditionally, amiRNAs are designed based on an endogenous miRNA precursor with certain mismatches at specific positions to increase their efficiency. In this study, the authors modified the highly expressed miR168a in Arabidopsis thaliana by replacing the single miR168 stem-loop/duplex with tandem asymmetrical amiRNA duplexes that follow the statistical rules of miRNA secondary structures. These tandem amiRNA duplexes, called “two-hit” amiRNAs, were shown to have a higher efficiency in silencing GFP and endogenous PDS reporter genes compared to traditional “one-hit” amiRNAs. The authors also demonstrated the effectiveness of “two-hit” amiRNAs in silencing genes involved in miRNA, tasiRNA, and hormone signalling pathways, individually or in families. Importantly, “two-hit” amiRNAs were also able to over-express endogenous miRNAs for their functions. The authors compare “two-hit” amiRNA technology with CRISPR/Cas9 and provide a web-based amiRNA designer for easy design and wide application in plants and even animals.  相似文献   

13.
14.
In contrast to hairpin RNAs, in which heterogeneous small RNAs are processed from double-stranded RNA to have potential off-target effects on endogenous other genes, artificial miRNAs (amiRNAs) have advantages of exquisite specificity and non-transitivity to thus target individual genes and groups of endogenous genes. Earlier studies showed that amiRNA engineering based on osa-miRNA528 precursor could efficiently trigger endogenous gene silencing and modulate agronomic traits in rice. However, both the expression efficiency of heterologous amiRNAs based on osa-miRNA528 precursor and the correlation of copy number with the relative expression level of amiRNAs remain unknown. In the present study, five amiRNAs (S9-1174, S9-1192, S11-864, S11-868 and S11-869) targeting different sites of S9 and S11 negative strands in rice dwarf virus (RDV) genome were constructed using endogenous osa-miRNA528 precursor as backbone. After identification by Northern blot, two amiRNAs (S9-1174 and S9-1192) targeting S9 negative strand in RDV genome were highly expressed, whereas in three tested amiRNAs targeting S11 negative strand in RDV genome, only two amiRNAs (S11-868 and S11-869) were processed efficiently. T0 generation transgenic rice containing amiRNAs (S9-1174, S9-1192, S11-868 and S11-869) exhibited different expression ratios of amiRNAs, accounting for 90.0, 90.0, 66.7 and 77.8 %, respectively. In addition, combination analysis with the relative amiRNA expression levels and its copy number revealed that the relative expression levels of amiRNAs had no relation to the copy number of T-DNA insert in transgenic rice.  相似文献   

15.
16.
17.
To study how the P19 suppressor of gene‐silencing protein can be used effectively for the production of therapeutic glycoproteins, the following factors were examined: the genetic elements used for expressing recombinant proteins; the effect of different P19 concentrations; compatibility of P19 with various Nicotiana tabacum cultivars for transgenic expression; the glycan profile of a recombinant therapeutic glycoprotein co‐expressed with P19 in an RNAi‐based glycomodified Nicotiana benthamiana expression host. The coding sequences for the heavy and light chains of trastuzumab were cloned into five plant expression vectors (102–106) containing different 5′ and 3′ UTRs, designated as vector sets 102–106 mAb. The P19 protein of Tomato bushy stunt virus (TBSV) was also cloned into vector 103, which contained the Cauliflower mosaic virus (CaMV) 35S promoter and 5′UTR together with the terminator region of the nopaline synthase gene of Agrobacterium. Transient expression of the antibody vectors resulted in different levels of trastuzumab accumulation, the highest being 105 and 106 mAb at about 1% of TSP. P19 increased the concentration of trastuzumab approximately 15‐fold (to about 2.3% of TSP) when co‐expressed with 103 mAb but did not affect antibody levels with vectors 102 and 106 mAb. When 103 mAb was expressed together with P19 in different N. tabacum cultivars, all except Little Crittenden showed a marked discolouring of the infiltrated areas of the leaf and decreased antibody expression. Co‐expression of P19 also abolished antibody accumulation in crosses between N. tabacum cv. I‐64 and Little Crittenden, indicating a dominant mode of inheritance for the observed P19‐induced responses.  相似文献   

18.
Highly specific gene silencing by artificial miRNAs in rice   总被引:2,自引:0,他引:2  
  相似文献   

19.
20.
Infection of Wheat dwarf virus (WDV) strains on barley results in dwarf disease, imposing severe economic losses on crop production. As the natural resistance resources against this virus are limited, it is imperative to elaborate a biotechnological approach that will provide effective and safe immunity to a wide range of WDV strains. Because vector insect‐mediated WDV infection occurs during cool periods in nature, it is important to identify a technology which is effective at lower temperature. In this study, we designed artificial microRNAs (amiRNAs) using a barley miRNA precursor backbone, which target different conservative sequence elements of the WDV strains. Potential amiRNA sequences were selected to minimize the off‐target effects and were tested in a transient sensor system in order to select the most effective constructs at low temperature. On the basis of the data obtained, a polycistronic amiRNA precursor construct (VirusBuster171) was built expressing three amiRNAs simultaneously. The construct was transformed into barley under the control of a constitutive promoter. The transgenic lines were kept at 12–15 °C to mimic autumn and spring conditions in which major WDV infection and accumulation take place. We were able to establish a stable barley transgenic line displaying resistance to insect‐mediated WDV infection. Our study demonstrates that amiRNA technology can be an efficient tool for the introduction of highly efficient resistance in barley against a DNA virus belonging to the Geminiviridae family, and this resistance is effective at low temperature where the natural insect vector mediates the infection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号