首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a consumer foraging across an isotopically heterogeneous landscape to test the combined effects of habitat and diet selection on the widths of the isotopic niche. We then modeled the actions of a naïve researcher who randomly sampled consumers from the simulated populations, and used these results to assess the overlap and partitioning of the isotopic and the ecological niches when habitat‐derived differences among isotope signatures are not considered. Our results suggest that populations of dietary specialists exhibited broader isotopic niches than populations composed of dietary generalists, and habitat generalists exhibited narrower isotopic niche widths compared with populations of individuals that foraged in specific habitats. The conversion of isotopic niches to ecological niches without knowledge of foraging behavior and habitat‐derived isotopic differences transformed an informative δ‐space into ‘a blurry p‐space’. Therefore, knowledge of habitat‐derived differences in stable isotope values and understanding of habitat use and individual foraging behavior are critical for the correct quantification of the ecological niche.  相似文献   

2.
1. Insects that emerge from rivers provide nutritional subsidies to local riparian predators. Adult damselflies and dragonflies often benefit from aquatic resources, but their high mobility and evasiveness have made it difficult to monitor their diets. 2. A dual fatty acid and stable isotope analysis approach was used to investigate the links between Odonata size and behaviour with proportions of their aquatically derived nutritional sources. Additionally, the study investigated the variation in dietary contributions of aquatic food sources to Odonata between two sections of a river, each with different aquatic productivity rates. 3. Variations in body size and foraging method of Odonata in the Kowie River (South Africa) contributed to differences in the contributions of aquatic food sources to their diets. Large Odonata that consumed prey in flight had smaller proportions of aquatic indicator fatty acids and stable isotope‐generated proportions of aquatic food sources than did the smaller Odonata that consumed prey from perches. 4. There was a considerable amount of interspecific variation in indicators of aquatic feeding, but Odonata at an upstream site had smaller proportions of aquatic indicators than those at a downstream site which had higher insect emergence rates. 5. The findings of this study contribute information on the dynamics of feeding ecology among adult Odonata, and the substantial contributions of aquatic prey (>80% of total diet in some cases) indicated that cross‐boundary trophic linkages via odonates are strong in the Kowie River.  相似文献   

3.
Identifying the mechanisms that structure niche breadth and overlap between species is important for determining how species interact and assessing their functional role in an ecosystem. Without manipulative experiments, assessing the role of foraging ecology and interspecific competition in structuring diet is challenging. Systems with regular pulses of resources act as a natural experiment to investigate the factors that influence the dietary niches of consumers. We used natural pulses of mast‐fruiting of American beech (Fagus grandifolia) to test whether optimal foraging or competition structure the dietary niche breadth and overlap between two congener rodent species (Peromyscus leucopus and P. maniculatus), both of which are generalist consumers. We reconstructed diets seasonally over a 2‐year period using stable isotope analysis (δ13C, δ15N) of hair and of potential dietary items and measured niche dynamics using standard ellipse area calculated within a Bayesian framework. Changes in niche breadth were generally consistent with predictions of optimal foraging theory, with both species consuming more beechnuts (a high‐quality food resource) and having a narrower niche breadth during masting seasons compared to nonmasting seasons when dietary niches expanded and more fungi (a low‐quality food source) were consumed. In contrast, changes in dietary niche overlap were consistent with competition theory, with higher diet overlap during masting seasons than during nonmasting seasons. Overall, dietary niche dynamics were closely tied to beech masting, underscoring that food availability influences competition. Diet plasticity and niche partitioning between the two Peromyscus species may reflect differences in foraging strategies, thereby reducing competition when food availability is low. Such dietary shifts may have important implications for changes in ecosystem function, including the dispersal of fungal spores.  相似文献   

4.
Individual foraging specialisation has important ecological implications, but its causes in group‐living species are unclear. One of the major consequences of group living is increased intragroup competition for resources. Foraging theory predicts that with increased competition, individuals should add new prey items to their diet, widening their foraging niche (‘optimal foraging hypothesis’). However, classic competition theory suggests the opposite: that increased competition leads to niche partitioning and greater individual foraging specialisation (‘niche partitioning hypothesis’). We tested these opposing predictions in wild, group‐living banded mongooses (Mungos mungo), using stable isotope analysis of banded mongoose whiskers to quantify individual and group foraging niche. Individual foraging niche size declined with increasing group size, despite all groups having a similar overall niche size. Our findings support the prediction that competition promotes niche partitioning within social groups and suggest that individual foraging specialisation may play an important role in the formation of stable social groupings.  相似文献   

5.
Recent advances in molecular techniques allow us to resolve the diet of unstudied taxa. Odonates are potentially important top‐down regulators of many insects. Yet, to date, our knowledge of odonate prey use is based mainly on limited observations of odonates catching or eating their prey. In this study, we examine the potential use of metabarcoding in establishing the diet of three adult odonate species (Lestes sponsa, Enallagma cyathigerum, and Sympetrum danae) at a site in southwestern Finland. To this purpose, we compared three different methods for extracting DNA from fecal samples: the Macherey‐Nagel Nucleospin XS kit, a traditional salt extraction, and the Zymo Research Fecal Microprep kit. From these extracts, we amplified group‐specific mitochondrial markers (COI and 16S rRNA) from altogether 72 odonate individuals, and compared them to comprehensive reference libraries. The three odonate species show major overlap in diet, with no significant differences between individuals of different size and/or gender, reflecting opportunistic foraging of adult odonates. Of a total of 41 different prey species detected, the most frequently consumed ones were Diptera, with additional records of six other orders. Based on our data, the best DNA extraction method is the traditional salt extraction, as it provides the most information on prey content while also being the most economical. To our knowledge, this is the first study to resolve the species‐level diet of adult odonates. Armed with the appropriate methodological caveats, we are ready to examine the ecological role of odonates in both terrestrial and aquatic food webs, and in transferring subsidies between these two realms.  相似文献   

6.
Ecological theory suggests that the coexistence of species is promoted by the partitioning of available resources, as in dietary niche partitioning where predators partition prey. Yet, the mechanisms underlying dietary niche partitioning are not always clear. We used fecal DNA metabarcoding to investigate the diets of seven nocturnal insectivorous bird and bat species. Low diet overlap (2%–22%) supported resource partitioning among all species. Differences in diet corresponded with species identity, prey detection method, and foraging behavior of predators. Insects with ultrasonic hearing capabilities were consumed significantly more often by birds than bats, consistent with an evolved avoidance of echolocating strategies. In turn, bats consumed a greater proportion of noneared insects such as spruce budworms. Overall, our results suggest that evolutionary interactions among bats and moths translate to dietary niche partitioning and coexistence among bats and nocturnal birds.  相似文献   

7.
Aim We evaluated Odonata distribution data and predicted the compositional resemblance based on niche‐based species distribution models to analyse the following questions: (1) How is estimated species richness distributed, and how can it be preserved under the actual network of conservation units (a gap analysis approach)? (2) How is the estimated odonate beta diversity distributed, and is there a better distribution of conservation units (a priority setting approach)? (3) Is the probability of being under protection a function of the potential species range size? and (4) Will the current conservation network proposals protect odonate taxa? Location Central Brazil in a core Cerrado area. Methods We generated odonate species distribution predictions based on MaxEnt and maps derived from estimated species richness, beta diversity and gap analysis for all species predicted to occur in the study area. Then, we compared these maps with current conservation units, land‐use patterns and proposals for the establishment of conservation units. Results Raw odonate species records provided limited utility for setting conservation priorities without the use of niche‐based models. However, area under the receiver operating curve (AUC) values were characterized by substantial variation that was related to the number of records. No current conservation units overlapped the areas with higher predicted richness and beta diversity, and in general, conservation units were not preserving restricted/rare species. There was a direct linear correlation between species range size and the proportion of its range protected in the current network of conservation units. Finally, we identified three areas with high odonate beta diversity where conservationist actions should be implemented. Main conclusions Current conservation units and future suggested areas do not overlap regions with high conservation values for odonates. Conservation units protect species at random, and the level of protection has a direct relationship with species range size; thus, wide‐range species are expected to be more protected than restricted or threatened species.  相似文献   

8.
We studied the winter foraging niches of tits and related species in deciduous forest fragments varying in size between 1 and 30 ha (plus one forest of 200 ha) in order to investigate the influence of forest fragmentation on foraging niches Very few correlations between niche structure (foraging niche, width and overlap) and forest size or isolation turned out to be significant This implies that either the species that disappear in small fragments are those that suffer most from competition (making the effect unmeasurable), or that competition is relatively unimportant for niche structure In any case we find no evidence that foraging niches are strongly affected by the changes (in habitat and/or community structure) associated with fragmentation  相似文献   

9.
Tropical dry forests are characterized by punctuated seasonal precipitation patterns that drive primary production and the availability of fruits, seeds, flowers, and insects throughout the year. In environments in which the quantity and quality of food resources varies seasonally, consumers should adjust their foraging behavior to maximize energy intake while minimizing overlap with competitors during periods of low food availability. Here, we investigated how the diets of frugivorous bats in tropical dry forests of NW Mexico varied in response to seasonal availability and how this affected dietary overlap of morphologically similar species. We performed stable isotope analyses to understand temporal and interspecific patterns of overall isotopic niche breadth, trophic position, and niche overlap in the diet of six frugivorous species of closely related New World leaf-nosed bats (family Phyllostomidae, subfamily Stenodermatinae). We estimated seasonal changes in resource abundance in two complementary ways: (a) vegetative phenology based on long-term remote sensing data and (b) observational data on food availability from previously published insect and plant fruiting surveys. In all species, there was a consistent pattern of reduced isotopic niche breadth during periods of low food availability. However, patterns of niche overlap varied between morphologically similar species. Overall, results from our study and others suggest that seasonal food availability likely determines overall dietary niche breadth in Phyllostomidae and that despite morphological specialization, it is likely that other mechanisms, such as opportunistic foraging and spatiotemporal niche segregation, may play a role in maintaining coexistence rather than simply dietary displacement.  相似文献   

10.
Studies on resource sharing and partitioning generally consider species that occur in the same habitat. However, subsidies between linked habitats, such as streams and riparian zones, create potential for competition between populations which never directly interact. Evidence suggests that the abundance of riparian consumers declines after fish invasion and a subsequent increase in resource sharing of emerging insects. However, diet overlap has not been investigated. Here, we examine the trophic niche of native fish, invasive fish, and native spiders in South Africa using stable isotope analysis. We compared spider abundance and diet at upstream fishless and downstream fish sites and quantified niche overlap with invasive and native fish. Spider abundance was consistently higher at upstream fishless sites compared with paired downstream fish sites, suggesting that the fish reduced aquatic resource availability to riparian consumers. Spiders incorporated more aquatic than terrestrial insects in their diet, with aquatic insects accounting for 45–90% of spider mass. In three of four invaded trout rivers, we found that the average proportion of aquatic resources in web‐building spider diet was higher at fishless sites compared to fish sites. The probability of web‐building and ground spiders overlapping into the trophic niche of invasive brown and rainbow trout was as high as 26 and 51%, respectively. In contrast, the probability of spiders overlapping into the trophic niche of native fish was always less than 5%. Our results suggest that spiders share resources with invasive fish. In contrast, spiders had a low probability of trophic overlap with native fish indicating that the traits of invaders may be important in determining their influence on ecosystem subsidies. We have added to the growing body of evidence that invaders can have cross‐ecosystem impacts and demonstrated that this can be due to niche overlap.  相似文献   

11.
Fin and humpback whales are large consumers that are often sympatric, effectively sharing or partitioning their use of habitat and prey resources. Stable carbon and nitrogen isotopes in the skin of fin and humpback whales from two regions in the western Gulf of Alaska, Kodiak, and Shumagin Islands, were analyzed to test the hypothesis that these sympatric baleen whales exhibit trophic niche partitioning within these regions. Standard ellipse areas, estimated using Bayesian inference, suggested that niche partitioning between species is occurring in the Kodiak region but not in the Shumagin Islands. Isotopic mixing models based on stable isotopes from whales and local prey samples, were used to estimate possible diet solutions for whales in the Kodiak region. Comparison of isotopic niches and diet models support niche partitioning, with fin whales foraging primarily on zooplankton and humpback whales foraging on zooplankton and small forage fish. The results of this study show that niche partitioning between sympatric species can vary by region and may be the result of prey availability, prey preferences, or both.  相似文献   

12.
The coexistence of competing species relies on niche partitioning. Competitive exclusion is likely inevitable at high niche overlap, but such divide between competitors may be bridged if environmental circumstances displace competitor niches to enhance partitioning. Foraging‐niche dimension can be influenced by environmental characteristics, and if competitors react differently to such conditions, coexistence can be facilitated. We here experimentally approach the partitioning effects of environmental conditions by evaluating the influence of water turbulence on foraging‐niche responses in two competing fish species, Eurasian perch Perca fluviatilis and roach Rutilus rutilus, selecting from planktonic and benthic prey. In the absence of turbulence, both fish species showed high selectivity for benthic chironomid larvae. R. rutilus fed almost exclusively on zoobenthos, whereas P. fluviatilis complemented the benthic diet with zooplankton (mainly copepods). In turbulent water, on the other hand, the foraging‐niche widths of both R. rutilus and P. fluviatilis increased, while their diet overlap simultaneously decreased, caused by 20% of the R. rutilus individuals turning to planktonic (mainly bosminids) prey, and by P. fluviatilis increasing foraging on littoral/benthic food sources. We show that moderate physical disturbance of environments, such as turbulence, can enhance niche partitioning and thereby coexistence of competing foragers. Turbulence affects prey but not fish swimming capacities, with consequences for prey‐specific distributions and encounter rates with fish of different foraging strategies (pause‐travel P. fluviatilis and cruise R. rutilus). Water turbulence and prey community structure should hereby affect competitive interaction strengths among fish species, with consequences for coexistence probability as well as community and system compositions.  相似文献   

13.
We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates (“dragonflies and damselflies”). Fossil evidence for “Cope's Rule” in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life‐stage. This lack of stabilizing selection during the adult life‐stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group.  相似文献   

14.
大山雀和褐头山雀种间关系研究   总被引:4,自引:0,他引:4  
刘nai发  李岩 《动物学研究》1989,10(4):277-284
在地理分布重叠地区的大山雀Parus major和褐头山雀Parus montanus栖息地海拔高度不同。大山雀栖于海拔2,370米以下,集中于次生杨桦林和老年人工杨树林;褐头山雀栖于海拔2,300米以上,集中于混交林和山杨栎林。它们的栖息地有一定重叠,但重叠值较低。重叠地带觅食生态位的四维中,树种选择一维有所不同,其余三维生态位重叠值均较大。两个种营养生态位有一定重叠,食物大小的重叠值更大。在进化发展过程中,两种山雀间完全的生态分离没有发生。  相似文献   

15.
Population connectivity is driven by individual dispersal potential and modulated by natal philopatry. In seabirds, high vagility facilitates dispersal yet philopatry is also common, with foraging area overlap often correlated with population connectivity. We assess the interplay between these processes by studying past and current connectivity and foraging niche overlap among southern rockhopper penguin colonies of the coast of southern South America using genomic and stable isotope analyses. We found two distinct genetic clusters and detected low admixture between northern and southern colonies. Stable isotope analysis indicated niche variability between colonies, with Malvinas/Falklands colonies encompassing the species entire isotopic foraging niche, while the remaining colonies had smaller, nonoverlapping niches. A recently founded colony in continental Patagonia differed in isotopic niche width and position with Malvinas/Falklands colonies, its genetically identified founder population, suggesting the exploitation of novel foraging areas and/or prey items. Additionally, dispersing individuals found dead across the Patagonian shore in an unusual mortality event were also assigned to the northern cluster, suggesting northern individuals reach southern localities, but do not breed in these colonies. Facilitated by variability in foraging strategies, and especially during unfavorable conditions, the number of dispersing individuals may increase and enhance the probability of founding new colonies. Metapopulation demographic dynamics in seabirds should account for interannual variability in dispersal behavior and pay special attention to extreme climatic events, classically related to negative effects on population trends.  相似文献   

16.
An ecological niche has been defined as an n‐dimensional hypervolume formed by conditions and resources that species need to survive, grow, and reproduce. In practice, such niche dimensions are measurable and describe how species share resources, which has been thought to be a crucial mechanism for coexistence and a major driver of broad biodiversity patterns. Here, we investigate resource partitioning and trophic interactions of three sympatric, phylogenetically related and morphologically similar species of thrushes (Turdus spp.). Based on one year of data collected in southern Brazil, we investigated niche partitioning using three approaches: diet and trophic niche assessed by fecal analysis, diet and niche estimated by stable isotopes in blood and mixing models, and bipartite network analysis derived from direct diet and mixing model outputs. Approaches revealed that the three sympatric thrushes are generalists that feed on similar diets, demonstrating high niche overlap. Fruits from C3 plants were one of the most important food items in their networks, with wide links connecting the three thrush species. Turdus amaurochalinus and T. albicollis had the greatest trophic and isotopic niche overlap, with 90% and 20% overlap, respectively. There was partitioning of key resources between these two species, with a shared preference for fig tree fruits—Ficus cestrifolia (T. amaurochalinus PSIRI% = 11.3 and T. albicollis = 11.5), which was not present in the diet of T. rufiventris. Results added a new approach to the network analysis based on values from the stable isotope mixing models, allowing comparisons between traditional dietary analysis and diet inferred by isotopic mixing models, which reflects food items effectively assimilated in consumer tissues. Both are visualized in bipartite networks and show food‐consumers link strengths. This approach could be useful to other studies using stable isotopes coupled to network analysis, particularly useful in sympatric species with similar niches.  相似文献   

17.
The food and habitat niches of two nesting species of hawks Accipiter spp were studied in an extensively forested area of the Eastern Deciduous Forest Biome Nesting habitat was quantitated at 19 Cooper s hawk A cooperu nests and 16 northern goshawk A gentilis nests There was no significant trend for Cooper's hawks to nest in less mature forests than northern goshawks as reported previously for western North America Forest habitats did not differ markedly except that shrub cover was greater at Cooper's hawk nest sites, which were also on flatter terrain and closer to roads, forest openings, and human habitation However, these few differences resulted m reducing habitat-niche overlap considerably (0 538), as was calculated using principal components analysis Mean prey weight was significantly larger for the northern goshawk which follows its 2 2-fold body weight advantage over Cooper's hawk Although bird prey was of primary importance to both Accipiter, goshawks took twice the proportion of mammals compared to their smaller congener Food-niche overlap was lowest by prey species overlap (0 470), followed by prey size class overlap (0 529), and highest by vertical foraging zone overlap (0 816) The Cooper's hawk showed the greatest niche breadth for both food and habitat niches indicating it as more of a generalist Overall, niche complementarity of food and habitat dimensions resulted in niche overdispersion along food and habitat dimensions with a total niche overlap (0 504) that was below the competition threshold These results suggested that competition (past and current) was responsible for segregating niches  相似文献   

18.
Individual variation and fitness are cornerstones of evolution by natural selection. The niche variation hypothesis (NVH) posits that when interspecific competition is relaxed, intraspecific competition should drive niche expansion by selection favoring use of novel resources and that among‐individual variation should confer a selective advantage. Population‐level niche expansion could be achieved by all individuals using all available resources, or by each individual using a unique combination of resources, thereby increasing among‐individual dietary niche variation. Although individual variation can lead to species‐level evolutionary and ecological change, observed variation does not ensure a beneficial outcome. We used carbon and nitrogen stable isotope analysis of claw keratin and a Bayesian stable isotope mixing model to estimate the summer (July–September) assimilated diet of individual female black Ursus americanus and brown U. arctos bears. We quantified variation in dietary niche in both populations, and assessed diet relative to percentage body fat. We hypothesized that if the NVH held, percentage body fat would be similar for individuals of the same species across much of the dietary range of observed proportional salmon contributions to individual bear diets. Although we found greater differences in dietary niches between than within species, we observed greater among‐individual dietary variation in the brown bear population. Moreover, we found that within each species individual female bears achieved similar ranges of percentage body fat at various levels of salmon in the diet. Our results provide support for the NVH. Linking individual dietary niches to measures of physiological condition related to fitness can offer new insights into eco‐evolutionary processes related to food resource use.  相似文献   

19.
Large carnivore community structure is affected by direct and indirect interactions between intra-guild members. Co-existence between different species within a carnivore guild may occur through diet, habitat or temporal partitioning. Since carnivore species are highly dependent on availability and accessibility of prey, diet partitioning is potentially one of the most important mechanisms in allowing carnivores to co-exist. Intra-guild interactions may vary over time as carnivore prey preference and diet overlap can change due to seasonal changes in resource availability. We conducted scat analysis to compare the seasonal changes in prey preference, diet partitioning and niche breadth of four large carnivore species, namely leopard Panthera pardus, spotted hyena Crocuta crocuta, brown hyena Parahyaena brunnea and wild dog Lycaon pictus in central Tuli, Botswana. Large carnivores in central Tuli display a high dietary overlap, with spotted hyena and brown hyena displaying almost complete dietary overlap and the other carnivore species displaying slightly lower but still significant dietary overlap. Dietary niche breadth for both hyena species was high possibly due to their flexible foraging strategies, including scavenging, while leopard and wild dog showed a relatively low niche breadth, suggesting a more specialised diet. High dietary overlap in central Tuli is possibly explained by the high abundance of prey species in the area thereby reducing competition pressure between carnivore species. Our research highlights the need to assess the influence of diet partitioning in structuring large carnivore communities across multiple study sites, by demonstrating that in prey rich environments, the need for diet partitioning by carnivores to avoid competition may be limited.  相似文献   

20.
A complementary approach of stomach content and stable isotope analyses was used to characterize the foraging ecology and evaluate niche overlap between pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales stranded on the U.S. mid‐Atlantic coast between 1998 and 2011. Food habits analysis demonstrated both species were primarily teuthophagous, with 35 species of cephalopods, and 2 species of mesopelagic fishes represented in their overall diets. Pianka's Index of niche overlap suggested high overlap between whale diets (On = 0.92), with squids from the families Histioteuthidae, Cranchidae, and Ommastrephidae serving as primary prey. Pygmy sperm whales consumed slightly larger prey sizes (mean mantle length [ML] = 10.8 cm) than dwarf sperm whales (mean ML = 7.8 cm). Mean prey sizes consumed by pygmy sperm whales increased with growth, but showed no trend in dwarf sperm whales. Significant differences were not detected in δ15N and δ13C values of muscle tissues from pygmy (10.8‰ ± 0.5‰, ?17.1‰ ± 0.6‰), and dwarf sperm whales (10.7‰ ± 0.5‰, ?17.0‰ ± 0.4‰), respectively. Isotopic niche widths also did not differ significantly and dietary overlap was high between the two species. Results suggest the feeding ecologies of the pygmy and dwarf sperm whales are similar and both species occupy equivalent trophic niches in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号