首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
BACKGROUND AND AIMS: Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. METHODS: The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). KEY RESULTS: Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2-6 months and lamina expansion took place over 1-4 months. The leaf life span was 5-20 months and the main A1 shoot extension happened over 122-177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. CONCLUSIONS: It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants.  相似文献   

2.
Age- and size-specific shoot life histories were studied with population censuses in June 1984 and June 1985 in an evergreen understory shrub. Rhododendron maximum. Most shoots (65%) survived without branching or flowering, and lesser numbers branched (2%), flowered (20%), or died (23%) during the year between censuses. The probabilities of surviving, branching, flowering or dying were both age- and size-dependent. Small, young shoots increased in leaf area. Flowering occurred most prominently in 3- to 6-year old shoots that had exceeded a leaf area of 200 cm2, and the rate of flowering increased proportionately with size above this threshold. Branching normally occurred in the year following flowering. The age and size distributions of the population shifted significantly between years, indicating a nonequilibrium population. The survival schedule was Deevey Type I, indicating a high degree of “parental care” of young shoots. Age- and age + size-based demographic models predicted a rapid decline of the shoot population over a decade, while a size-based model predicted a much slower decline in shoot numbers. A sensitivity analysis of the models showed that overall shoot population growth was positively influenced by branching shoots and shoots that added leaf area, and negatively influenced by shoots that lost leaf area, died, or flowered. The role of shoot life histories in determining individual plant fitness and ecological dominance is discussed.  相似文献   

3.
To elucidate the significance of the simultaneous growth of vegetative and reproductive organs in the prostrate annual Chamaesyce maculata (L.) Small (Euphorbiaceae) from the standpoint of meristem allocation, we investigated plant architecture, meristem allocation, and the spatial and temporal patterns in vegetative growth and reproduction in the reproductive stage. The numbers of secondary and tertiary shoots successively increased by branching in the reproductive stage, and the sum of shoot length was greater in secondary shoots than in primary shoots. The specific shoot length (shoot length per shoot biomass) was greater in lateral shoots than in primary shoots, indicating efficient lateral shoot elongation. The internode length was shorter in secondary shoots than in primary shoots, increasing the number of nodes per shoot length in secondary shoots. Many nodes on a shoot generated two meristems, one of which committed to a flower and one to a lateral shoot. The number of reproductive meristems was greatest in tertiary shoots, and 96% of total reproductive meristems on shoots were generated in lateral shoots. On almost all nodes, the reproductive meristem developed into a flower, and 95–98% of the flowers produced a fruit. Therefore, vegetative growth by branching in the reproductive stage contributed to the increase in reproductive outputs. From the standpoint of meristem allocation, the simultaneous growth of vegetative and reproductive organs in prostrate plant species might be important for increasing the number of growth and reproductive meristems, resulting in the increase in reproductive outputs.  相似文献   

4.
Mycorrhizae may help plants to thrive in Mediterranean semi-arid ecosystems by altering antioxidant enzyme activities. Our objective was to determine the influence of mycorrhizal inoculation with an allochthonous arbuscular mycorrhizal (AM) fungus, Glomus claroideum , Schenck & Smith, or with a mixture of native AM fungi, on the activity of antioxidant enzymes from shoots of Olea europaea L. ssp. sylvestris , Retama sphaerocarpa (L.) Boissier and Rhamnus lycioides L. seedlings afforested in a degraded Mediterranean semi-arid soil. One year after planting, shoot biomass of inoculated O. europaea seedlings was about 630%, of non-inoculated plants. Shoot biomass of G. claroideum -colonized R. sphaerocarpa was greater than that of seedlings inoculated with the mixed native AM fungi after 12 months. Inoculation with a mix of native AM fungi was the most effective treatment for increasing shoot biomass and N, P and K contents in shoot tissues of R. lycioides . Both mycorrhizal inoculation treatments increased the nutrient contents in shoots of O. europaea and R. lycioides . In O. europaea plants, the inoculation treatments increased catalase, ascorbate peroxidase and dehydroascorbate reductase activities, but not monodehydroascorbate reductase and glutathione reductase activities. Inoculation with G. claroideum increased the activities of all antioxidant enzymes in R. sphaerocarpa . Monodehydroascorbate reductase, glutathione reductase and superoxide dismutase activities in R. lycioides leaves were preferentially increased by inoculation with the mixture of native AM fungi. This work support the view that increased antioxidant enzyme activities could be involved, at least in part, in the beneficial effects of mycorrhizal colonization on the performance of shrub species grown under semi-arid Mediterranean conditions.  相似文献   

5.

Background and Aims

Shoot characteristics differ depending on the meristem tissue that they originate from and environmental conditions during their development. This study focused on the effects of plant water status on axillary meristem fate and flowering patterns along proleptic and epicormic shoots, as well as on shoot growth rates on ‘Nonpareil’ almond trees (Prunus dulcis). The aims were (1) to characterize the structural differences between proleptic and epicormic shoots, (2) to determine whether water deficits modify shoot structures differently depending on shoot type, and (3) to determine whether shoot structures are related to shoot growth rates.

Methods

A hidden semi-Markov model of the axillary meristem fate and number of flower buds per node was built for two shoot types growing on trees exposed to three plant water status treatments. The models segmented observed shoots into successive homogeneous zones, which were compared between treatments. Shoot growth rates were calculated from shoot extension measurements made during the growing season.

Key Results

Proleptic shoots had seven successive homogeneous zones while epicormic shoots had five zones. Shoot structures were associated with changes in growth rate over the season. Water deficit (1) affected the occurrence and lengths of the first zones of proleptic shoots, but only the occurrence of the third zone was reduced in epicormic shoots; (2) had a minor effect on zone flowering patterns and did not modify shoot or zone composition of axillary meristem fates; and (3) reduced growth rates, although patterns over the season were similar among treatments.

Conclusions

Two meristem types, with different latency durations, produced shoots with different growth rates and distinct structures. Differences between shoot type structure responses to water deficit appeared to reflect their ontogenetic characteristics and/or resource availability for their development. Tree water deficit appeared to stimulate a more rapid progression through ontogenetic states.  相似文献   

6.
Plants of the seagrass Zostera noltii were cultured in the laboratory (mesocosms) for two weeks to assess the effect of above:below-ground (AG/BG) biomass ratios and light on growth, photosynthesis and chemical composition. Experimental plant units (EPUs) with different proportions between AG and BG biomass were obtained from plants of the same size (containing 6 shoots and 5 internodes) by excising 0-5 shoots. The EPUs maintained the proportions in AG/BG biomass ratios during the experiment. While growth rate was unaffected by biomass partitioning at high light, maximum growth at low light was recorded in plants with low AG/BG ratios. The production of shoots and rhizomes showed a compensatory morphological response depending on the initial AG/BG proportions regardless of the light level. While shoot production, estimated as shoot appearance rate, was high at low AG/BG ratios and minimal under high AG/BG values, rhizome production, estimated as internode appearance rate and internode elongation rate, was maximal under high AG/BG proportions and decreased towards lower AG/BG ratios. This rhizomatic response was observed for secondary rhizomes and not for primary ones. In contrast to morphological response, no significant differences were detected in maximum electron transport rates (ETRm) among the different shoots in the plant. However, mean values of ETRm in plants were affected by biomass partitioning and light. EPUs grown in low light increased the sucrose stored in shoots as the AG/BG biomass ratios decreased; however, EPUs grown at high light showed no effect of biomass partitioning on sucrose levels. In conclusion, shoots excision by experimental manipulation caused a compensatory morphological response in plants while photosynthetic performance remained almost unaffected.  相似文献   

7.
外域杂草薇甘菊 (Mikaniamicrantha)具有极强的分枝能力。在枝构件水平上 ,对生长在台湾相思 (Acaciaconfusa)群落和芒草 (Miscanthussinensis)群落中的薇甘菊枝构件的分枝格局和生物量分配的比较分析得出 :1)同芒草群落相比 ,台湾相思群落中薇甘菊各级枝的分枝数、分枝密度和分枝率都低 ,而分枝长度则较长 ;2 )台湾相思群落中薇甘菊以第一级分枝为主 ,而在芒草群落中则以第二级分枝为主 ;3)台湾相思林中薇甘菊枝构件的叶面积率、比叶面积和比茎长及叶片生物量分配显著大于芒草草丛 ;4)两个群落中薇甘菊枝构件的节间长和比叶柄长没有显著差异。这些结果说明薇甘菊枝构件对环境条件变化具不同响应。  相似文献   

8.
木本植物的构型及其在植物生态学研究的进展   总被引:23,自引:0,他引:23  
陈波  宋永昌  达良俊 《生态学杂志》2002,21(3):52-56,28
一般认为 ,木本植物的植株结构由枝系和根系两个亚系统构成[5,3 8] 。其地上部分的枝或茎的顶端分生组织和侧生分生组织通过不断重复的、持续的活动产生新的分枝 ,构成了复杂的枝系结构和多样的形态特征。传统的植物学研究中曾以树木的形态特征作为植物形态学、分类学和植被类型划分的依据。由于植物种群生态学中构件理论的提出[6,4 1] ,人们已经意识到植物体的各构件单元之间的关系和等级结构 ,认为木本植物地上部分存在着两种尺度的整合 ,即各构件单元在枝条水平上的整合以及各枝条构成的冠幅复合体[1,2 1] 。植物体不同的枝系特征以及枝…  相似文献   

9.
The evolutionary trend and its ecological implications in sympodial and monopodial branching patterns has been investigated in 20 JapaneseAcer spp. through comparison of shoot tip abortion and terminal bud formation. The genus is divided into two species groups according to its branching pattern, one (6 species) predominantly exhibiting sympodial branching with frequent monopodial branching in short shoots (sympodial species), and the other (14 species) exhibiting only monopodial branching (monopodial species). The early ontogeny of leaf and bud scales is described. Despite the difference in branching patterns, the bud scales of terminal buds are essentially the same in having a leaf base developed to function as a protecting organ. In all the sympodial species, during the abortion of a sympodium shoot tip, one or two pairs of primordia were found to occur on the apex, and later wither. These primordia resemble bud scales of terminal buds in their ontogeny and morphology, and appear to be rudimentary. It is suggested that a rudimentary terminal bud develops together with the establishment of sympodial branching, and that sympodial branching has originated from monopodial branching. Based on this proposed evolutionary trend, it is suggested thatAcer has moved from less shady habitats into shady habitats with monopodial branching (advantageous for vertical growth) changing into sympodial branching (advantageous for lateral spread).  相似文献   

10.
Abstract. Plants are composed of modules, such as shoots and leaves. However, modules have been overlooked as potential abundance measures in describing plant communities. We sampled 8 communities, to examine whether module counts gave different conclusions from biomass on community structure, and better discriminated between communities. Different abundance measures – number of leaves, number of shoots and photosynthetic biomass – gave different results for between‐site comparisons of evenness and rank consistency. Since evenness is intended to represent a feature of the whole community, it should vary more between communities than within; module‐based abundance achieved this better than biomass. It is speculated that the restrictions on species co‐occurrences when plant communities assemble may sometimes be based on the number of modules rather than on biomass.  相似文献   

11.
In a controlled experiment, Salix matsudana plants were subjected to uniform nonshading (F-S), partial shading (P-S) and uniform shading (U-S). The shoots of the plants in the F-S and U-S treatments were referred to as H-H and L-L, respectively. The plants in the P-S treatment had two kinds of shoots: (1) shoots under the nonshading treatment that were connected to others under the shading treatment (H-L).(2) Shoots under the shading treatment that were connected to others under the nonshading treatment (L-H). The physiological acclimation and growth response of the species to the partial shading were examined. The partial shading had significant effects on photosynthetic dynamics, transpiration and stomatal conductance, but no effect on instantaneous water use efficiency and maximum quantum yield. Water saturation deficit and coefficient of water loss were significantly smaller in the H-L shoots than in the H-H shoots. Leaf natality, leaf mortality and leaf turnover were greater in the H-L shoots than in the H-H shoots. In contrast, these three parameters were smaller in the L-H shoots than in the L-L shoots. The H-L shoots had significantly larger branching ratio, total branch length and shoot biomass than the H-H shoots. The L-H shoots had smaller branching ratio, total branch length and shoot biomass than the L-L shoots. Total plant biomass in the treatments increased as follows: F-S相似文献   

12.
王仁忠 《植物研究》2000,20(4):450-457
植物种群营养生长和生殖生长的关系是植物生殖生态学研究的重要内容之一,自本世纪70年代,国外已有大量报道,但国内的研究报道很少。本文在种群水平上研究了人工油松种群一年生雌性枝条和雄性枝条在枝长、直径、叶数、叶生物量、枝生物量及新生枝条在大小孢子球生物量、雌雄枝条长度和生物量等方面的差异,结果表明,一年生枝条除在西方向上雌雄枝条直径差异显著和在东、西方向上雌雄枝条生物量差异显著外,其它处理条件下雌雄枝条在长度、直径、叶数、叶生物量和枝生物量等方面差异均不显著;而对新生枝条的取样分析表明同方向上雌雄枝条在大小孢子球生物量、雌雄枝条长度、雌雄枝条生物量等方面差异均显著或极显著。无论是一年生枝条,还是新生枝条,在东、西、南、北四个方向上其各项指标差异显著或极显著。  相似文献   

13.
尚无证据表明顶端优势强的物种存在广义顶端优势潜在“成本”  相似文献   

14.
15.
Plant responses to browsing can affect root and shoot morphology, which is important to subsequent herbivory, nutrient acquisition and competition. This paper examines the above- and below-ground responses of three browse species, with different growth strategies, to simulated browsing damage at different times of year. Saplings were grown in pots in sand culture to enable whole sapling analysis. At winter dormancy or budburst, 50% of previous year's shoots (and associated leaves/buds) were clipped. Subsequent sapling growth and morphology was compared with that of unclipped control saplings. Treatment differences in growth parameters of each species were observed, including changes in branching patterns, shoot lengths, diameters and ratios, leaf sizes and end-of-season bud numbers. Some responses were damage-induced per se; others differed according to timing of damage. Compensatory growth by the two deciduous species ( Betula pendula , Sorbus aucuparia ) resulted in few biomass differences by the end of the year of damage as compared to controls, but both above- and below-ground growth of clipped Pinus sylvestris was poor, particularly those damaged at budburst, giving strong differences between control, dormant, and budburst clipped saplings.  相似文献   

16.
Architectural analysis of 840 Slovenian walnut (Juglans regia L.) genotypes was performed to determine the most typical and frequent morphological types and to evaluate their vegetative and generative potential. Four branching and fruiting patterns (I-IV) were detected. A 3-year-old fruiting branch, consisting of a 3-year-old shoot plus corresponding 2-year-old and 1-year-old shoots, was used as a structural unit for quantitative analysis. In the intermediate fruit-bearing types with mesotonic and acrotonic branching pattern (types II and III), the total lengths of 3-, 2- and 1-year-old shoots were 385 and 380 cm, respectively, compared with 275 and 253 cm in the terminal and lateral-fruiting types (types I and IV). In type I, 1-year-old shoots had significantly fewer nodes than in other types. In addition, they had a thinner basal diameter than types III and IV, and their angles were the most erect (39 degrees ). Only 0.4 out of 3.6 1-year-old shoots were flowering with one mixed bud with 1.9 female flowers. In type IV, 2-year-old shoots had significantly more nodes and a larger basal diameter than other types. One-year-old shoots in type IV are thicker than those in other types. Ratios between the number of flowering and the total number of 1-year-old shoots were 0.7 in type IV, 0.6 in type III, 0.5 in type II and 0.1 in type I. On 1-year-old shoots in type IV, 1.7 mixed buds with a mean of three female inflorescences per bud were counted. Consequently, the generative potential is highest in type IV and lowest in type I. In types II and III, growth and the ability to bear fruits are more balanced.  相似文献   

17.
Large saline lakes of former USSR: a summary review   总被引:1,自引:1,他引:0  
Shoot biomass and nitrogen, accumulated within above-ground plant biomass in autumn, correlate with nitrogen availability indicated by nitrogen content (% DM) of several shoot parts during the height of the growth period.A higher nitrogen percentage of the shoots is correlated with a higher shoot loss and subsequent substitution by branching and tillering during and continuing toward the end of the growth period. A delayed switch from the vegetative to the generative phase reduces the translocation of reserve material to the rhizome. Increasing nitrogen load is at least one of the factors causing instability and reed-belt decline.  相似文献   

18.
We present a comprehensive analysis of factors affecting resource allocation and crown formation in a subarctic birch tree, Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti. Using biomass measurements and digitized data on tree architecture, we investigated several hypotheses on various factors that may modify plant growth. We also analyzed the extent to which different mechanisms operate at different scales, ranging from individual shoots to the whole branches or trees. Different factors affected allocation at different levels of organization. Stem age had a minor effect, suggesting that similar control mechanisms operate at all stages of development. Fates of individual shoots were affected by their local growing conditions as indicated, for example, by the dependence of long shoot production on light. Buds formed in the current long shoots were likely to become new long shoots. In the innermost crown parts, radial growth had priority compared to long shoot production. Elongation of individual long shoots was controlled by two conflicting factors. Long distance from the roots suppressed growth, probably indicating costs associated with resource transportation, whereas a high level of light augmented growth. In contrast, growth of entire branches was not so clearly related to the availability of resources, but showed limitation due to allometric scaling. This set a relationship between the maximum long shoot number and the overall branch size, and may indicate allometric constraints to the way a tree is constructed. Strict allometric relationships existed also between other structural traits of mountain birch, most of them similar at all levels of branching hierarchy. However, despite the upper level restrictions set by allometry, source-sink interactions and localized responses of individual shoots operated as local processes that directed allocation towards the most favourable positions. This may be a mechanism for achieving efficient tree architecture in terms of resource intake and costs of transportation.  相似文献   

19.
The patterns of vegetative growth and reproduction in relation to orders of terminal branches were examined in the evergreen woody plant, Eurya japonica. The branch order number was determined centrifugally. The trunk was given order number 1; branches issuing directly from the trunk were order 2; branches growing on order 2 branches were order 3, and so on. The results of this study show the differential patterns of vegetative growth and reproduction in relation to the branch orders. Lower-order shoots of terminal branches grew more, but produced few flowers. On the other hand, for the higher-order terminal branches, shoot growth was very limited but flowering was more intense. The results show that a tree can be interpreted not as a mere population of equivalent modules but as a spatially structured population. Thus, it is essential to consider the position of modules within the branch system when patterns of vegetative growth and reproduction are examined. It is hypothesized that the difference in the opportunity cost in relation to the branch orders is the main cause of the spatial structure for patterns of vegetative growth and reproduction. Furthermore, for same-order terminal branches, current-year shoot elongation was independent of flowering intensity. These results suggest that this species only invests resources in reproduction that are surplus to its requirements for the functions associated with survival, such as growth and/or storage. Received: 22 July 1999 / Accepted: 12 January 2000  相似文献   

20.
Resource partitioning between shoot growth, storage and reproduction is poorly understood in many clonal plant species. This study documents seasonal patterns of growth, 14C-labelled photoassimilate distribution and remobilization in the invasive rhizomatous species Fallopia japonica (Japanese knotweed). Biomass accumulation above- and below-ground in F. japonica was rapid. By September, rhizome biomass had increased 18-fold from the initial harvest in May (representing 48% of total plant biomass) and this was maintained over winter. Patterns of 14C allocation from F. japonica shoots labelled at different times of year show that as the season progressed, the rhizomes became an increasingly important sink for current assimilate (the percentage of 14C recovered from rhizomes was 35% in August and 67% in September) and the corresponding retention of assimilate by established shoots declined. The percentage of 14C exported to roots was greatest in August. Relatively little photoassimilate was exported to other shoots on the plant, or to flowers. Recycling of photoassimilate was fairly tight in this species and 14C fixed by shoots in early May 1999 or September 1999 was remobilized to the rhizome prior to shoot senescence and death. Some of this 14C was then remobilized to new shoots early the following spring. These characteristics may contribute to the success of F. japonica in colonizing a variety of contrasting habitats, often with serious management implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号