首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the UDP-glucose pyrophosphorylase (galU) and UDP-galactose epimerase (galE) genes of Lactococcus lactis MG1363 to investigate their involvement in biosynthesis of UDP-glucose and UDP-galactose, which are precursors of glucose- and galactose-containing exopolysaccharides (EPS) in L. lactis. The lactococcal galU gene was identified by a PCR approach using degenerate primers and was found by Northern blot analysis to be transcribed in a monocistronic RNA. The L. lactis galU gene could complement an Escherichia coli galU mutant, and overexpression of this gene in L. lactis under control of the inducible nisA promoter resulted in a 20-fold increase in GalU activity. Remarkably, this resulted in approximately eightfold increases in the levels of both UDP-glucose and UDP-galactose. This indicated that the endogenous GalE activity is not limiting and that the GalU activity level in wild-type cells controls the biosynthesis of intracellular UDP-glucose and UDP-galactose. The increased GalU activity did not significantly increase NIZO B40 EPS production. Disruption of the galE gene resulted in poor growth, undetectable intracellular levels of UDP-galactose, and elimination of EPS production in strain NIZO B40 when cells were grown in media with glucose as the sole carbon source. Addition of galactose restored wild-type growth in the galE disruption mutant, while the level of EPS production was approximately one-half the wild-type level.  相似文献   

2.
Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on improved strains of the gram-positive bacterium Corynebacterium glutamicum. This microorganism synthesizes trehalose through two major pathways, OtsBA and TreYZ, by using UDP-glucose and ADP-glucose, respectively, as the glucosyl donors. In this paper we describe improvement of the UDP-glucose supply through heterologous expression in C. glutamicum of the UDP-glucose pyrophosphorylase gene from Escherichia coli, either expressed alone or coexpressed with the E. coli ots genes (galU otsBA synthetic operon). The impact of such expression on trehalose accumulation and excretion, glycogen accumulation, and the growth pattern of new recombinant strains is described. Expression of the galU otsBA synthetic operon resulted in a sixfold increase in the accumulated and excreted trehalose relative to that in a wild-type strain. Surprisingly, single expression of galU also resulted in an increase in the accumulated trehalose. This increase in trehalose synthesis was abolished upon deletion of the TreYZ pathway. These results proved that UDP-glucose has an important role not only in the OtsBA pathway but also in the TreYZ pathway.  相似文献   

3.
The activities of some enzymes belonging to the Leloir pathway, phosphoglucomutase, UDP-glucose pyrophosphorylase, UDP-galactose 4-epimerase and galactose 1-P uridyl transferase, were studied in a wild ropy, a non-ropy and an overproducing mutant ropy strain of Streptococcus thermophilus. These activities were assayed over successive culture transfers along with exocellular polysaccharide (EPS) production. The overproducing mutant ropy strain showed increments in polysaccharide production over successive culture transfers, as opposed to reductions in production by the wild ropy strain. The observed variations among strains in the enzyme activities that were analysed in relation to EPS production suggest their involvement in the synthesis of sugar-nucleotide EPS precursors.  相似文献   

4.
A cluster containing five similarly oriented genes involved in the metabolism of galactose via the Leloir pathway in Lactococcus lactis subsp. cremoris MG1363 was cloned and characterized. The order of the genes is galPMKTE, and these genes encode a galactose permease (GalP), an aldose 1-epimerase (GalM), a galactokinase (GalK), a hexose-1-phosphate uridylyltransferase (GalT), and a UDP-glucose 4-epimerase (GalE), respectively. This genetic organization reflects the order of the metabolic conversions during galactose utilization via the Leloir pathway. The functionality of the galP, galK, galT, and galE genes was shown by complementation studies performed with both Escherichia coli and L. lactis mutants. The GalP permease is a new member of the galactoside-pentose-hexuronide family of transporters. The capacity of GalP to transport galactose was demonstrated by using galP disruption mutant strains of L. lactis MG1363. A galK deletion was constructed by replacement recombination, and the mutant strain was not able to ferment galactose. Disruption of the galE gene resulted in a deficiency in cell separation along with the appearance of a long-chain phenotype when cells were grown on glucose as the sole carbon source. Recovery of the wild-type phenotype for the galE mutant was obtained either by genetic complementation or by addition of galactose to the growth medium.  相似文献   

5.
Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on improved strains of the gram-positive bacterium Corynebacterium glutamicum. This microorganism synthesizes trehalose through two major pathways, OtsBA and TreYZ, by using UDP-glucose and ADP-glucose, respectively, as the glucosyl donors. In this paper we describe improvement of the UDP-glucose supply through heterologous expression in C. glutamicum of the UDP-glucose pyrophosphorylase gene from Escherichia coli, either expressed alone or coexpressed with the E. coli ots genes (galU otsBA synthetic operon). The impact of such expression on trehalose accumulation and excretion, glycogen accumulation, and the growth pattern of new recombinant strains is described. Expression of the galU otsBA synthetic operon resulted in a sixfold increase in the accumulated and excreted trehalose relative to that in a wild-type strain. Surprisingly, single expression of galU also resulted in an increase in the accumulated trehalose. This increase in trehalose synthesis was abolished upon deletion of the TreYZ pathway. These results proved that UDP-glucose has an important role not only in the OtsBA pathway but also in the TreYZ pathway.  相似文献   

6.
7.
The galactose operon encoding a repressor and genes for the Leloir pathway for galactose metabolism (galactokinase, galactose-1-phosphate-uridyl transferase and UDP glucose-4-epimerase) was located adjacent to the multiple sugar metabolism (msm) operon on the chromosome of Streptococcus mutans Ingbritt (serotype c) and the complete nucleotide sequence of this 5-kilobase region was determined. The Leloir pathway was induced by the presence of galactose in the growth medium or following the release of intracellular galactose after uptake and cleavage of -galactosides by the multiple sugar metabolism system. Analysis of the mechanism of galactose transport confirmed the absence of a galactose-specific phosphotransferase system and suggested the presence of an inducible galactose permease. Evidence is presented that galactose transport is independent of the proton motive force and may be ATP-dependent.  相似文献   

8.
9.
10.
Bacteria belonging to the Burkholderia cepacia complex (BCC) are important opportunistic pathogens in patients with cystic fibrosis (CF). Since approximately 80% of the CF isolates examined produce exopolysaccharide (EPS), it was hypothesized that this EPS may play a role in the colonization and persistence of these bacteria in the CF lung. The present study describes the identification and physical organization of the EPS biosynthetic gene cluster. This bce gene cluster was identified following the isolation of three EPS-defective mutants from the highly mucoid CF isolate IST408, belonging to BCC genomovar I, based on random plasposon insertion mutagenesis and comparison of the nucleotide sequence of the interrupted genes with the available genome of Burkholderia cenocepacia J2315. This 16.2 kb cluster includes 12 genes and is located on chromosome 2. Database searches for homologous proteins and secondary structure analysis for the deduced Bce amino acid sequences revealed genes predicted to encode enzymes required for the formation of nucleotide sugar precursors, glycosyltransferases involved in the repeat-unit assembly, and other proteins involved in polymerization and export of bacterial surface polysaccharides.  相似文献   

11.
12.
Acidithiobacillus ferrooxidans (A. ferrooxidans) ATCC 23270 is a model bacteria for bioleaching research. Because of the use of extractant in metal extraction industry, A. ferrooxidans needs to cope with the water-organic two-phase system. To get insight into the molecular response of A. ferrooxidans to organic solvent, global gene expression pattern was examined in A. ferrooxidans ATCC 23270 cells subjected to Lix984n (an organic extractant) using the method of whole-genome DNA microarray. The data suggested that the global response of A. ferrooxidans to Lix984n stress was characterized by the up-regulation of genes involved in pentose phosphate pathway, fatty acid and glutamate biosynthesis. In further study, compared to heterotrophic bacteria in dealing with short-time stress, A. ferrooxidans has a special strategy of continuously enhancing the expression of genes encoding proteins involved in electron transport, such as petI, petII, cyo and cyd. Besides, acrAB-tolC operon encoding organic solvent efflux pump and its positive regulator gene ostR were addressed.  相似文献   

13.
【目的】嗜热链球菌IMAU20246是一株具有良好发酵特性且高产胞外多糖(exopolysaccharides,EPS)的菌株,但其EPS基因簇及合成途径尚不清晰。因此可通过全基因组测序及生物信息学分析菌株基因组序列,探究EPS合成及调控机制。【方法】本实验对嗜热链球菌IMAU20246进行全基因组测序并进行生物信息学分析,解析EPS生物合成相关基因簇及EPS合成途径,同时采用实时荧光定量PCR技术(quantitative real-time PCR,qRT-PCR)对其不同时间点EPS基因簇的表达进行定量分析。【结果】嗜热链球菌IMAU20246基因组中有一个18.1 kb的EPS生物合成基因簇,编码15个与EPS生物合成相关的基因。嗜热链球菌IMAU20246通过转运葡萄糖、甘露糖、果糖、半乳糖、乳糖、海藻糖、纤维二糖及蔗糖合成UDP-葡萄糖、dTDP-葡萄糖、dTDP-鼠李糖、UDP-半乳糖、UDP-呋喃半乳糖、UDP-N-乙酰葡萄糖胺和UDP-N-乙酰半乳糖胺等7种糖核苷酸。qRT-PCR的结果表明,EPS基因簇中的基因在细胞生长阶段均能表达,特别是糖基转移酶基因epsE、epsF、epsH和epsJ在培养6 h时表达量最高,此时EPS产量达到最高。【结论】本研究从基因组解析了嗜热链球菌IMAU20246 EPS基因簇及其合成途径,为菌株的进一步开发提供了理论依据。  相似文献   

14.
The galK gene, encoding galactokinase of the Leloir pathway, was insertionally inactivated in Streptococcus mutans UA159. The galK knockout strain displayed only marginal growth on galactose, but growth on glucose or lactose was not affected. In strain UA159, the sugar phosphotransferase system (PTS) for lactose and the PTS for galactose were induced by growth in lactose and galactose, although galactose PTS activity was very low, suggesting that S. mutans does not have a galactose-specific PTS and that the lactose PTS may transport galactose, albeit poorly. To determine if the galactose growth defect of the galK mutant could be overcome by enhancing lactose PTS activity, the gene encoding a putative repressor of the operon for lactose PTS and phospho-beta-galactosidase, lacR, was insertionally inactivated. A galK and lacR mutant still could not grow on galactose, although the strain had constitutively elevated lactose PTS activity. The glucose PTS activity of lacR mutants grown in glucose was lower than in the wild-type strain, revealing an influence of LacR or the lactose PTS on the regulation of the glucose PTS. Mutation of the lacA gene of the tagatose pathway caused impaired growth in lactose and galactose, suggesting that galactose can only be efficiently utilized when both the Leloir and tagatose pathways are functional. A mutation of the permease in the multiple sugar metabolism operon did not affect growth on galactose. Thus, the galactose permease of S. mutans is not present in the gal, lac, or msm operons.  相似文献   

15.
Li J  Wang N 《PloS one》2011,6(7):e21804
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and regulatory mechanism of biofilm formation.  相似文献   

16.
It has been shown previously that Escherichia coli accumulates endogenously synthesized trehalose under osmotic stress. We report here that E. coli contained an osmotically regulated trehalose-phosphate synthase which utilized UDP-glucose and glucose 6-phosphate as substrates. In the wild type, the synthase was induced by growth in glucose-mineral medium of elevated osmotic strength and the synthase itself was strongly stimulated by K+ and other monovalent cations. A laboratory strain which expressed the synthase at a high constitutive level was found. GalU mutants, defective in synthesis of UDP-glucose, did not accumulate trehalose. Two genes governing the synthase were identified and named otsA and otsB (osmoregulatory trehalose synthesis). They mapped near 42 min in the flbB-uvrC region. Mutants with an otsA-lacZ or otsB-lacZ operon fusion displayed osmotically inducible beta-galactosidase activity; i.e., the activity was increased fivefold by growth in medium of elevated osmotic strength. Mutants unable to synthesize trehalose (galU, otsA, and otsB) were osmotically sensitive in glucose-mineral medium. But an osmotically tolerant phenotype was restored in the presence of glycine betaine, which also partially repressed the synthesis of synthase in the wild type and of beta-galactosidase in ots-lacZ fusion mutants.  相似文献   

17.
18.
A region of the genome of the filamentous, nitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 that contains a cluster of genes involved in nitrate assimilation has been identified. The genes nir, encoding nitrite reductase, and nrtABC, encoding elements of a nitrate permease, have been cloned. Insertion of a gene cassette into the nir-nrtA region impaired expression of narB, the nitrate reductase structural gene which together with nrtD is found downstream from nrtC in the gene cluster. This indicates that the nir-nrtABCD-narB genes are cotranscribed, thus constituting an operon. Expression of the nir operon in strain PCC 7120 is subjected to ammonium-promoted repression and takes place from an NtcA-activated promoter located 460 bp upstream from the start of the nir gene. In the absence of ammonium, cellular levels of the products of the nir operon are higher in the presence of nitrate than in the absence of combined nitrogen.  相似文献   

19.
To study the influence of phosphoglucomutase (PGM) activity on exopolysaccharide (EPS) synthesis in glucose- and lactose-growing Streptococcus thermophilus, a knockout PGM mutant and a strain with elevated PGM activity were constructed. The pgmA gene, encoding PGM in S. thermophilus LY03, was identified and cloned. The gene was functional in Escherichia coli and was shown to be expressed from its own promoter. The pgmA-deficient mutant was unable to grow on glucose, while the mutation did not affect growth on lactose. Overexpression of pgmA had no significant effect on EPS production in glucose-growing cells. Neither deletion nor overexpression of pgmA changed the growth or EPS production on lactose. Thus, the EPS precursors in lactose-utilizing S. thermophilus are most probably formed from the galactose moiety of lactose via the Leloir pathway, which circumvents the need for a functional PGM.  相似文献   

20.
It is possible that the low levels of production of exopolysaccharides (EPSs) by lactic acid bacteria could be improved by altering the levels of enzymes in the central metabolism that influence the production of precursor nucleotide sugars. To test this hypothesis, we identified and cloned the galU gene, which codes for UDP glucose pyrophosphorylase (GalU) in Streptococcus thermophilus LY03. Homologous overexpression of the gene led to a 10-fold increase in GalU activity but did not have any effect on the EPS yield when lactose was the carbon source. However, when galU was overexpressed in combination with pgmA, which encodes phosphoglucomutase (PGM), the EPS yield increased from 0.17 to 0.31 g/mol of carbon from lactose. A galactose-fermenting LY03 mutant (Gal(+)) with increased activities of the Leloir enzymes was also found to have a higher EPS yield (0.24 g/mol of carbon) than the parent strain. The EPS yield was further improved to 0.27 g/mol of carbon by overexpressing galU in this strain. However, the highest EPS yield, 0.36 g/mol of carbon, was obtained when pgmA was knocked out in the Gal(+) strain. Measurements of the levels of intracellular metabolites in the cultures revealed that the Gal(+) strains had considerably higher glucose 1-phosphate levels than the other strains, and the strain lacking PGM activity had threefold-higher levels of glucose 1-phosphate than the other Gal(+) strains. These results show that it is possible to increase EPS production by altering the levels of enzymes in the central carbohydrate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号