首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of ‘universal’ scaling models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here, we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and ‘global’ (i.e. interspecific) scaling exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models (Metabolic Scaling Theory (MST), Geometric Similarity, and Stress Similarity) in savanna systems. For the allometric relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass) the empirically calculated exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length, which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions from the three models we find MST predictions are most consistent with our observed allometries. In those situations where observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between observed scaling relationships in variable ecosystems and those predicted by ideal models such as MST.  相似文献   

2.
Background and AimsUnderstanding how plant allometry, plant architecture and phenology contribute to fruit production can identify those plant traits that maximize fruit yield. In this study, we compared these variables and fruit yield for two shrub species, Vaccinium angustifolium and Vaccinium myrtilloides, to test the hypothesis that phenology is linked to the plants’ allometric traits, which are predictors of fruit production.MethodsWe measured leaf and flower phenology and the above-ground biomass of both Vaccinium species in a commercial wild lowbush blueberry field (Quebec, Canada) over a 2-year crop cycle; 1 year of pruning followed by 1 year of harvest. Leaf and flower phenology were measured, and the allometric traits of shoots and buds were monitored over the crop cycle. We hand-collected the fruits of each plant to determine fruit attributes and biomass.Key ResultsDuring the harvesting year, the leafing and flowering of V. angustifolium occurred earlier than that of V. myrtilloides. This difference was related to the allometric characteristics of the buds due to differences in carbon partitioning by the plants during the pruning year. Through structural equation modelling, we identified that the earlier leafing in V. angustifolium was related to a lower leaf bud number, while earlier flowering was linked to a lower number of flowers per bud. Despite differences in reproductive allometric traits, vegetative biomass still determined reproductive biomass in a log–log scale model.ConclusionsGrowing buds are competing sinks for non-structural carbohydrates. Their differences in both number and characteristics (e.g. number of flowers per bud) influence levels of fruit production and explain some of the phenological differences observed between the two Vaccinium species. For similar above-ground biomass, both Vaccinium species had similar reproductive outputs in terms of fruit biomass, despite differences in reproductive traits such as fruit size and number.  相似文献   

3.
刘尊驰  刘华峰  赵丹  罗宁  孙园园  郝晓冉  刘彤 《生态学报》2015,35(18):5957-5965
以新疆准噶尔盆地藜科猪毛菜属植物紫翅猪毛菜(Salsola affinis C.A.Mey)、钠猪毛菜(Salsola nitraria Pall)为研究对象,用繁殖分配比例的方法对比分析了两种猪毛菜不同海拔同一种群内不同个体大小繁殖分配的特点,并用异速生长模型分析了不同海拔繁殖生物量与营养生物量之间分配与个体大小的依赖关系。结果发现:1)不同海拔繁殖生物量(R)与营养生物量(V)呈不同程度的异速生长。紫翅猪毛菜随海拔的升高R-V的异速生长斜率显著升高,截距随海拔的升高没有显著增加;而钠猪毛菜的斜率随海拔升高显著降低,截距则显著升高。2)紫翅猪毛菜在较低海拔个体大小与繁殖分配呈负相关,在较高海拔呈正相关;钠猪毛菜在较低海拔个体大小与繁殖分配呈正相关,在较高海拔呈负相关;两种猪毛菜繁殖分配的适应对策相反。3)将同一种群个体大小分成大、中、小3种类型,多重比较发现紫翅猪毛菜在较低海拔,中小个体的繁殖分配显著高于大个体的繁殖分配;在较高海拔,大个体的繁殖分配显著高于中小个体的繁殖分配。钠猪毛菜在较低海拔,大个体的繁殖分配显著高于中、小个体的繁殖分配;在较高海拔,小个体的繁殖分配显著高于大、中个体的繁殖分配。综合分析认为:两个物种随海拔变化产生不同的繁殖分配策略,除遗传效应外,环境和个体大小对钠猪毛菜繁殖分配的变化均产生重要影响,而紫翅猪毛菜繁殖分配的变化主要由海拔差异导致。由于微生境对同一种群的个体大小产生影响,进而产生不同的繁殖分配模式,所以在干旱区更应重视个体大小对繁殖分配的影响。  相似文献   

4.
以青藏高原高寒草甸中三种同域分布的喉毛花为研究对象,通过比较三个种的植株性状和繁殖分配,探讨繁殖分配的种间差异及其与植株个体大小的关系。结果表明:(1)三个种的植株高度、顶花大小和单株花数目、繁殖分配均存在种间差异,这可能与其各自的交配系统和具体的生境以及相应的生活史对策有关;(2)在三种喉毛花中,投入到营养器官和繁殖器官的绝对资源量均呈显著正相关,未检测到植株生长和繁殖间的权衡关系;(3)三个种的个体大小与繁殖器官生物量均呈显著正相关,而与繁殖分配均呈显著负相关,这表明个体越大,繁殖投入越高,而繁殖分配越低,与以往研究结果一致,这可能是由于繁殖分配与个体大小之间存在异速关系。  相似文献   

5.
Summary The likelihood that a plant's seeds will be dispersed by fruit-eating birds may depend upon the size and shape of its fruits. Assuming that elongate fruits can be swallowed more easily than spherical fruits of equal volume and that plant fitness is enhanced by seed dispersal by many individuals and species of birds, natural selection should favour increasing fruit elongation with increasing fruit size in bird-dispersed plants. According to this view, this allometric pattern would be adaptive. Alternatively, fruit shape in bird-dispersed plants may be constrained by development or phylogeny. To determine whether there was any evidence to support the adaptive allometry hypothesis, we examined allometric relationships between length and diameter in fruits and seeds in a group of neotropical bird-dispersed plant species. Using the major axis technique, we regressed ln(diameter) on ln(length) for fruits and seeds at various taxonomic levels: (1) within individual trees ofOcotea tenera (Lauraceae) (2) among 19 trees within a population ofO. tenera, as well as among pooled fruits from multiple trees within 20 other species in the Lauraceae, (3) among 25 sympatric species within a plant family (Lauraceae) and (4) among 167 species representing 63 angiosperm families within a plant community in Monteverde, Costa Rica. At most taxonomic levels, a tendency for fruit length to increase more rapidly than fruit diameter among fruits (negative allometry) occurred more frequently than expected by chance. Estimated slopes of the regressions of fruit length on fruit diameter were < 1 within 15 of the 19 individualO. tenera trees, among tree means withinO. tenera, among pooled fruits within 16 of the 20 other species in the Lauraceae, among species means within the Lauraceae and among means of all bird-dispersed species in the lower montane forests of Monteverde. Seed allometry showed similar patterns, although for both fruits and seeds the broad confidence intervals of the slopes estimated by major axis regression overlapped 1 in many cases. Among the 63 Monteverde family means, fruit length and diameter scaled isometrically. Based on measurements of ontogenetic changes in fruit shape in a single species,O. viridifolia, we found no evidence that negative allometry in fruit shape within the Lauraceae was an inevitable consequence of developmental constraints. Instead, increasing elongation of fruits and seeds in certain plant taxa is consistent with adaptation to gape-limited avian seed dispersers. Contrary results from vertebrate-dispersed species from Malawi and Spain may reflect differences between the New and Old World in plant taxa, seed dispersers or evolutionary history.  相似文献   

6.
The semiarid regions of northwestern Venezuela have extremely low and highly unpredictable precipitation, yet these conditions support species with contrasting phenology and leaf longevity. Episodic rains significantly increased leaf water potential (from –5 to –2.5 MPa) in several species and, in some cases, triggered flowering, leading us to hypothesize that the coexistence of species with contrasting phenology is due to differences in their ability to utilize small rainfall events. Irrigation treatments were used to simulate brief rainfall events, and the response of three species (Erythrina velutina [deciduous], Croton heliaster [semideciduous], and Capparis odoratissima [evergreen]) was monitored over a period of 14 months. To partition the effects of water reaching the canopy versus the soil, irrigation was supplied either in the form of mist to the canopy or by minisprinklers near the base of the trees. Nonirrigated trees were used as controls. Productivity (estimated as aboveground litter production) and water potential were enhanced by soil irrigation in two species. However, in the evergreen species canopy irrigation had a greater effect on water relations and productivity than soil irrigation, as indicated by higher predawn water potential, higher total annual flower (40 g m–2 year–1) and fruit (5 g m–2 year–1) production, and longer leaf longevity (410 days in control trees versus 520 days in canopy-irrigated trees). Canopy irrigation augmented flower and fruit production in all three species. Our findings suggest that reproductive phenology in these species is driven by episodic rains and that evergreen species may sustain productivity by their ability to make use of water deposited on leaf surfaces.  相似文献   

7.

Background and Aims

Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species.

Methods

Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g).

Key Results

Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits.

Conclusions

Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant allometry could arise due to selection for different types of biomass allocation in response to different environmental stressors (e.g. fire vs. herbivory).  相似文献   

8.

Premise

Intersexual mating facilitation in flowering plants has been largely underexplored. Duodichogamy is a rare flowering system in which individual plants flower in the sequence male-female-male. We studied the adaptive advantages of this flowering system using chestnuts (Castanea spp., Fagaceae) as models. These insect-pollinated trees produce many unisexual male catkins responsible for a first staminate phase and a few bisexual catkins responsible for a second staminate phase. We hypothesized that duodichogamy increases female mating success by facilitating pollen deposition on stigmas of the rewardless female flowers through their proximity with attractive male flowers responsible for the minor staminate phase.

Methods

We monitored insect visits to 11 chestnut trees during the entire flowering period and explored reproductive traits of all known duodichogamous species using published evidence.

Results

In chestnuts, insects visited trees more frequently during the first staminate phase but visited female flowers more frequently during the second staminate phase. All 21 animal-pollinated duodichogamous species identified are mass-flowering woody plants at high risk of self-pollination. In 20 of 21 cases, gynoecia (female flower parts) are located close to androecia (male flower parts), typically those responsible for the second minor staminate phase, whereas androecia are often distant from gynoecia.

Conclusions

Our results suggest that duodichogamy increases female mating success by facilitating pollen deposition on stigmas by means of the attractiveness of the associated male flowers while effectively limiting self-pollination.
  相似文献   

9.
The resource allocation for vegetative growth and female reproduction in three tree species of subgenus Cyclobalanopsis (Quercus, Fagaceae), i.e., Q. salicina, Q. sessilifolia, and Q. acuta, were examined on a per-individual basis in two consecutive reproductive seasons, in order to test whether these trees fit the predictions of the masting hypotheses about resource matching versus resource switching. Since the three Quercus species have a biennial fruiting habit, it takes 3 years for the observation of two reproductive events. Female flower and acorn production per tree were investigated by using a seed-trap method and a numerical analysis of seed dispersal. The net production of each individual was estimated as the sum of the annual increase in the dry mass of vegetative organs and reproductive investment per tree. In the data analyses, the three species were pooled, since all 12 sample trees of the subgenus apparently showed masting in the same year, with no exceptions. Female flower and acorn production per individual tree changed considerably between years. The net production per tree increased with tree size, but did not differ between years. Therefore, the reproductive allocation (proportion of a plant’s annual assimilated resources which are used for reproduction) differed dramatically between years. On the other hand, within a year, the reproductive allocation increased with increasing net production per tree. These results suggest that the switching of resource allocation between years within an individual are occurring in subgenus Cyclobalanopsis species, and the intensity of the switching increases with increasing tree size.  相似文献   

10.
Increases in atmospheric carbon dioxide (CO2) concentrations are expected to lead to increases in the rate of tree biomass accumulation, at least temporarily. On the one hand, trees may simply grow faster under higher CO2 concentrations, preserving the allometric relations that prevailed under lower CO2 concentrations. Alternatively, the allometric relations themselves may change. In this study, the effects of elevated CO2 (eCO2) on tree biomass and allometric relations were jointly assessed. Over 100 trees, grown at Duke Forest, NC, USA, were harvested from eight plots. Half of the plots had been subjected to CO2 enrichment from 1996 to 2010. Several subplots had also been subjected to nitrogen fertilization from 2005 to 2010. Allometric equations were developed to predict tree height, stem volume, and aboveground biomass components for loblolly pine (Pinus taeda L.), the dominant tree species, and broad‐leaved species. Using the same diameter‐based allometric equations for biomass, it was estimated that plots with eCO2 contained 21% more aboveground biomass, consistent with previous studies. However, eCO2 significantly affected allometry, and these changes had an additional effect on biomass. In particular, P. taeda trees at a given diameter were observed to be taller under eCO2 than under ambient CO2 due to changes in both the allometric scaling exponent and intercept. Accounting for allometric change increased the treatment effect of eCO2 on aboveground biomass from a 21% to a 27% increase. No allometric changes for the nondominant broad‐leaved species were identified, nor were allometric changes associated with nitrogen fertilization. For P. taeda, it is concluded that eCO2 affects allometries, and that knowledge of allometry changes is necessary to accurately compute biomass under eCO2. Further observations are needed to determine whether this assessment holds for other taxa.  相似文献   

11.
While theoretical allometric models postulate universal scaling exponents, empirical relationships between tree dimensions show marked variability that reflects changes in the biomass allocation pattern. As growth of the various tree compartments may be controlled by different functions, it is hypothesized that they may respond differently to factors of variation, resulting in variable tree morphologies and potentially in trade-offs between allometric relationships. We explore the variability of tree stem and crown allometries using a dataset of 1,729 trees located in an undisturbed wet evergreen forest of the Western Ghats, India. We specifically test whether species adult stature, terrain slope, tree size and crown light exposure affect the relationships between stem diameter and stem height (stem allometry), and between stem diameter and crown width, crown area and crown volume (crown allometries). Results show that both stem and crown allometries are subject to variations in relation to both endogenous (tree size, species adult stature) and exogenous (terrain slope, crown light exposure) factors. Stem allometry appears to be more affected by these factors than are crown allometries, including the stem diameter–crown volume relationship, which proved to be particularly stable. Our results support the idea that height is a prevailing adjustment factor for a tree facing variable growth (notably light) conditions, while stem diameter–crown volume allometry responds more to internal metabolic constraints. We ultimately discuss the various sources of variability in the stem and crown allometries of tropical trees that likely play an important role in forest community dynamics.  相似文献   

12.
林木分化对兴安落叶松异速生长方程和生物量分配的影响   总被引:4,自引:0,他引:4  
李巍  王传宽  张全智 《生态学报》2015,35(6):1679-1687
林木因对资源竞争而产生分化,从而影响林木的异速生长方程和生物量分配,但其影响程度还不清楚。采用林木相对直径法将38株兴安落叶松(Larix gmelinii)样木在林分中的分化等级分为优势木、中等木和被压木,量化林木分化对林木异速生长方程和生物量分配的影响。结果显示:生物量组分异速生长方程多以胸径(DBH)为自变量为好,但以枝下高处的树干直径为自变量估测其枝、叶生物量时更精确。在一定的胸径范围内,同一胸径下不同林木分化等级的地下部分各组分生物量没有显著差异(P0.05),但优势木分配更多的生物量给枝和叶,中等木比优势木分配更多的生物量给树干,中等木比被压木分配更多的生物量给地上部分,而且被压木和中等木的树高显著高于优势木。除根茎生物量之外,不同林木分化等级的生物量组分(包括枝、叶、树干和根系)的相对分配比例无显著差异(P0.05),根冠比保持相对稳定。这些结果表明,主要由竞争而引起的林木分化改变了兴安落叶松地上生物量组分的异速生长和分配,但其相对分配格局较为保守。  相似文献   

13.
Abstract It has been proposed that relative allocation to female function increases with plant size in animal‐pollinated species. Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size‐dependent sex allocation (SDS), throwing doubt on the generalization of SDS. Plant size, phenotypic gender, and flower production were measured in experimental populations of an aquatic, insect‐pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities. The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors. In the high‐density population, 48% of ramets were male without female flowers, but in the low‐density population all ramets were monoecious. We observed allometric growth in reproductive allocation with ramet size, as evident in biomass of reproductive structures and number of flowers. However, within both populations female and male flower production were isometric with ramet size, in contrast to an allometric growth in femaleness as predicted by SDS. Phenotypic gender was not related to ramet size in either population. The results indicated that large plants may increase both female and male function even in animal‐pollinated plants, pointing towards further studies to test the hypothesis of size‐dependent sex allocation using different allocation currencies.  相似文献   

14.
Summary We examined the influence of differential reproductive frequency between the sexes on tertiary (phenotypic) sex ratios in the the dioecious tree Nyssa sylvatica (Nyssaceae). Reproduction was evaluated in relation to sex, size and canopy exposure using flowering data collected from 1229 marked trees over a four year period. For subsets of each population we used data on flower number, fruit crop size, fruit/flower ratios, and individual flower and fruit mass to compare biomass invested in reproductive structures of males and females. We also examined seasonal changes in stem nitrogen and soluble carbohydrate content in relation to flower and fruit production for trees of each sex. Our results indicate that: 1) Male-biased tertiary sex ratios could be explained by more frequent reproduction by male trees; 2) Estimated secondary sex ratios based on sums of all known males and females were not significantly different from 1:1; 3) Flowering frequency of males and females was significantly related to plant size (DBH) and exposure of the canopy to light; 4) Estimtes of reproductive biomass allocation ranged from 1.36 to 10.8 times greater for females relative to males; 5) Flower production was related to stem nutrient status for both sexes, but nutrient depletion and its effect on subsequent flowering was much more pronounced for female trees. We conclude that less frequent flowering by female trees may result from depletion of stored reserves, and that differential flowering frequency in N. sylvatica may ultimately reduce apparent sexual differences in the costs of reproduction.  相似文献   

15.
Hermaphroditic plants allocate their reproductive resources to different functions: male, female and pollinator attraction. While earlier sex-allocation models considered only male and female functions, more recent ones can divide reproductive resources into multiple functions. The basic predictions derived from these models are similar. While most models predict sex allocation at the fruit stage (pollen and seeds), some have examined allocation at the flower stage (pollen and ovules). Selfing rate, mode of pollination and competition among offspring of the same parent are some of the factors that can influence sex allocation among populations. Although the empirical evidence lags behind the theoretical development, sex-allocation theory has been quite successful at predicting trends among populations.  相似文献   

16.
A central goal of comparative life-history theory is to derive the general rules governing growth, metabolic allocation, and biomass partitioning. Here, we use allometric theory to predict the relationships among annual leaf, stem, and root growth rates (GL, GS, and GR, respectively) across a broad spectrum of seed plant species. Our model predicts isometric scaling relationships among all three organ growth rates: GL is proportional to GS is proportional to GR. It also provides a conceptual basis for understanding the differences in the absolute amounts of biomass allocated to construct the three organ types. Analyses of a large compendium of biomass production rates across diverse seed plant species provide strong statistical support for the predictions of the theory and indicate that reproductive investments may scale isometrically with respect to vegetative organ growth rates. The general rules governing biomass allocation as indexed by the scaling exponents for organ growth rates are remarkably indifferent to plant size and taxonomic affiliation. However, the allometric "constants" for these relationships differ numerically as a function of phenotypic features and local environmental conditions. Nonetheless, at the level of both inter- and intraspecific comparisons, the same proportional biomass allocation pattern holds across extant seed plant species.  相似文献   

17.
This study measured the quantities of effective pollen vectors and their pollen loads arriving at the canopies of dioecious tropical rain forest trees in north-east Queensland. Population flowering synchrony, effective pollinator populations and pollen loads transferred between staminate and pistillate trees were compared among three insect-pollinated tree species. All three were visited by a wide range of insects, 75% of which (mostly 3–6 mm long) carried conspecific pollen. Fewer than 8% of individual insects were found to be carrying single-species pollen exclusively and none could be described as specialist pollen foragers. The introduced honeybee carried greater quantities of pollen than any native species but was not necessarily a reliable pollinator. The brief flowering periods in Neolitsea dealbata (3–4 weeks) and Litsea leefeana (4–5 weeks) populations were synchronized among individuals. Flowering in the Diospyros pentamera population extended over 15 weeks and most individuals were in flower for most of this period. Staminate trees began flowering earlier, produced more flowers and attracted relatively more insects than did pistillate trees, suggesting a density-dependent response of pollinators to flowering performance. Pollen was trapped in greater quantities on insects at staminate trees than at pistillate trees. Insect numbers increased at peak flowering periods and Diptera were the most abundant flower visitors. Anthophilous Coleoptera were more numerous at staminate than at pistillate trees in all three tree species populations. Larger quantities of pollen were mobilized during peak flowering times although the greatest quantities were transferred to pistillate canopies towards the end of the population flowering periods. Diptera carried pollen more often to pistillate N. dealbata and L. leefeana trees than did other groups whereas Coleoptera carried pollen more often to pistillate D. pentamera trees. The two contrasting flowering performances in the three tree species are discussed with reference to mechanisms that facilitate pollen transfer between staminate and pistillate trees.  相似文献   

18.
The reproductive success of three co-flowering species ofVaccinium (V. myrtillus, V. vitis-idaea andV. uliginosum) was studied in one heathland of the Upper Ardennes, Belgium, during three years (1988–1990). The purpose was to examine whether pollen limitation, flower position and flowering phenology may influence patterns of fruit set in these three sympatric species. I quantified fruit and seed set following supplementary hand-pollinations and compared this to natural fruit set. On the same plants, I also quantified fruit and seed set in relation to the spatial position of the flowers on the ramet and their temporal sequence of blooming. Hand-pollination had no significant effect on fruit set inV. vitis-idaea andV. uliginosum, but significantly increased seed number per fruit in 1989. InV. myrtillus both fruit and seed set were increased by supplementary pollination, but significantly in only one year. Analyses of position effects revealed that the fruits in the lower positions in the ramet did not mature preferentially and did not contain more seeds inV. uliginosum and inV. vitis-idaea. Flowering phenology also had no significant effect for these species. InV. myrtillus hand-pollinated flowers showed a seasonal decline in seed number, and control (naturally pollinated) flowers showed a seasonal increase in fruit set. Fruit and seed set appear to be pollen-limited rather than resource-limited inV. uliginosum. In the two other species, unfavorable weather (frosts) could be a more important cause of low fruit and seed set.  相似文献   

19.
A multiple regression procedure was used to evaluate allometricresponses to stand age and species population densities in monoculturesand mixtures of orchardgrass (Dactylis glomerata L., also knownas cocksfoot) and timothy (Phleum pratense L.). In each speciesthe allometry between shoot dry weight and either leaf areaor tiller number per plant was studied. Population density treatmentsaffected allometry by changing allometric exponents expressingthe ratio of relative growth rates of different plant characteristics.Allometric relationships changed as growth proceeded, and thetwo species differed in their allometric responses to treatments. Plant growth analysis, allometry, competition, Dactylis glomerata L., Phleum pratense L.  相似文献   

20.
Elizabeth Elle 《Oecologia》1996,107(1):61-70
Patterns of resource allocation to growth, current reproduction, and potential future reproduction were quantified in six genetically distinct cultivars ofVaccinium macrocarpon. For all cultivars (genotypes), vegetative size is positively correlated with some measures of current reproduction (fruit and flower number) but negatively correlated with others (seed number per fruit, seed weight per fruit). Vegetative growth in the current year is significantly related to the production of reproductive terminal buds, a measure of the potential for reproduction in the following year. Stems with low levels of current reproduction — lower flower number, fruit number, and seed weight — were more likely to form reproductive terminal buds than stems with higher levels of current reproduction. Individual genotypes differed significantly for vegetative size, fruit number, fruit weight, seed number, and seed weight, as well as for the frequency of fruiting stems and reproductive terminal buds produced. Genotypes were segregated in principal component space, indicating overall differences between them in allocation to the suite of variables measured. These results indicate the possibility of fitness differences among cultivars due to genetically determined allocation strategy, which has implications for fitness differences among genotypes within natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号