首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Heparosan, the capsular polysaccharide discovered in many pathogenic bacteria, is a promising material for heparin preparation. In this study, the Pasteurella multocida heparosan synthase 1 (PmHS1) module was used to synthesize heparosan with controlled molecular weight, while tuaD/gtaB module or gcaD module was responsible for UDP-precursors production in Bacillus subtilis 168. After metabolic pathway optimization, the yield of heparosan was as high as 237.6 mg/L in strain containing PmHS1 module and tuaD/gtaB module, which indicated that these two modules were key factors in heparosan production. The molecular weight of heparosan varied from 39 to 53 kDa, which indicated that heparosan molecular weight could be adjusted by the amount of PmHS1 and the ratio of two UDP precursors. The results showed that it would be possible to produce safe heparosan with appropriate molecular weight which is useful in heparin production.

  相似文献   

2.
Heparosan synthase catalyzes the polymerization of heparosan (-4GlcUAβ1-4GlcNAcα1-)(n) by transferring alternatively the monosaccharide units from UDP-GlcUA and UDP-GlcNAc to an acceptor molecule. Details on the heparosan chain initiation by Pasteurella multocida heparosan synthase PmHS2 and its influence on the polymerization process have not been reported yet. By site-directed mutagenesis of PmHS2, the single action transferases PmHS2-GlcUA(+) and PmHS2-GlcNAc(+) were obtained. When incubated together in the standard polymerization conditions, the PmHS2-GlcUA(+)/PmHS2-GlcNAc(+) showed comparable polymerization properties as determined for PmHS2. We investigated the first step occurring in heparosan chain initiation by the use of the single action transferases and by studying the PmHS2 polymerization process in the presence of heparosan templates and various UDP-sugar concentrations. We observed that PmHS2 favored the initiation of the heparosan chains when incubated in the presence of an excess of UDP-GlcNAc. It resulted in a higher number of heparosan chains with a lower average molecular weight or in the synthesis of two distinct groups of heparosan chain length, in the absence or in the presence of heparosan templates, respectively. These data suggest that PmHS2 transfers GlcUA from UDP-GlcUA moiety to a UDP-GlcNAc acceptor molecule to initiate the heparosan polymerization; as a consequence, not only the UDP-sugar concentration but also the amount of each UDP-sugar is influencing the PmHS2 polymerization process. In addition, it was shown that PmHS2 hydrolyzes the UDP-sugars, UDP-GlcUA being more degraded than UDP-GlcNAc. However, PmHS2 incubated in the presence of both UDP-sugars favors the synthesis of heparosan polymers over the hydrolysis of UDP-sugars.  相似文献   

3.
Heparosan (-GlcUA-beta1,4-GlcNAc-alpha1,4-)(n) is a member of the glycosaminoglycan polysaccharide family found in the capsule of certain pathogenic bacteria as well as the precursor for the vertebrate polymers, heparin and heparan sulfate. The two heparosan synthases from the Gram-negative bacteria Pasteurella multocida, PmHS1 and PmHS2, were efficiently expressed and purified using maltose-binding protein fusion constructs. These relatively homologous synthases displayed distinct catalytic characteristics. PmHS1, but not PmHS2, was able to produce large molecular mass (100-800 kDa) monodisperse polymers in synchronized, stoichiometrically controlled reactions in vitro. PmHS2, but not PmHS1, was able to utilize many unnatural UDP-sugar analogs (including substrates with acetamido-containing uronic acids or longer acyl chain hexosamine derivatives) in vitro. Overall these findings reveal potential differences in the active sites of these two Pasteurella enzymes. In the future, these catalysts should allow the creation of a variety of heparosan and heparinoids with utility for medical applications.  相似文献   

4.
Pasteurella multocida heparosan synthase PmHS2 is a dual action glycosyltransferase that catalyzes the polymerization of heparosan polymers in a non-processive manner. The two PmHS2 single-action transferases, obtained previously by site-directed mutagenesis, have been immobilized on Ni(II)-nitrilotriacetic acid agarose during the purification step. A detailed study of the polymerization process in the presence of non-equal amounts of PmHS2 single-action transferases revealed that the glucuronyl transferase (PmHS2-GlcUA(+)) is the limiting catalyst in the polymerization process. Using experimental design, it was determined that the N-acetylglucosaminyl transferase (PmHS2-GlcNAc(+)) plays an important role in the control of heparosan chain elongation depending on the number of heparosan chains and the UDP-sugar concentrations present in the reaction mixture. Furthermore, for the first time, the synthesis of heparosan oligosaccharides alternately using PmHS2-GlcUA(+) and PmHS2-GlcNAc(+) is reported. It was shown that the synthesis of heparosan oligosaccharides by PmHS2 single-action transferases do not require the presence of template molecules in the reaction mixture.  相似文献   

5.
The Pasteurella multocida heparosan synthases, PmHS1 and PmHS2, are homologous (~65% identical) bifunctional glycosyltransferase proteins found in Type D Pasteurella. These unique enzymes are able to generate the glycosaminoglycan heparosan by polymerizing sugars to form repeating disaccharide units from the donor molecules UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc). Although these isozymes both generate heparosan, the catalytic phenotypes of these isozymes are quite different. Specifically, during in vitro synthesis, PmHS2 is better able to generate polysaccharide in the absence of exogenous acceptor (de novo synthesis) than PmHS1. Additionally, each of these enzymes is able to generate polysaccharide using unnatural sugar analogs in vitro, but they exhibit differences in the substitution patterns of the analogs they will employ. A series of chimeric enzymes has been generated consisting of various portions of both of the Pasteurella heparosan synthases in a single polypeptide chain. In vitro radiochemical sugar incorporation assays using these purified chimeric enzymes have shown that most of the constructs are enzymatically active, and some possess novel characteristics including the ability to produce nearly monodisperse polysaccharides with an expanded range of sugar analogs. Comparison of the kinetic properties and the sequences of the wild-type enzymes with the chimeric enzymes has enabled us to identify regions that may be responsible for some aspects of both donor binding specificity and acceptor usage. In combination with previous work, these approaches have enabled us to better understand the structure/function relationship of this unique family of glycosyltransferases.  相似文献   

6.
Heparosan synthase 1 (PmHS1) from Pasteurella multocida Type D is a dual action glycosyltransferase enzyme that transfers monosaccharide units from uridine diphospho (UDP) sugar precursors to form the polysaccharide heparosan (N-acetylheparosan), which is composed of alternating (-alpha4-GlcNAc-beta1,4-GlcUA-1-) repeats. We have used molecular genetic means to remove regions nonessential for catalytic activity from the amino- and the carboxyl-terminal regions as well as characterized the functional regions involved in GlcUA-transferase activity and in GlcNAc-transferase activity. Mutation of either one of the two regions containing aspartate-X-aspartate (DXD) residue-containing motifs resulted in complete or substantial loss of heparosan polymerizing activity. However, certain mutant proteins retained only GlcUA-transferase activity while some constructs possessed only GlcNAc-transferase activity. Therefore, it appears that the PmHS1 polypeptide is composed of two types of glycosyltransferases in a single polypeptide as was found for the Pasteurella multocida Type A PmHAS, the hyaluronan synthase that makes the alternating (-beta3-GlcNAc-beta1,4-GlcUA-1-) polymer. However, there is low amino acid similarity between the PmHAS and PmHS1 enzymes, and the relative placement of the GlcUA-transferase and GlcNAc-transferase domains within the two polypeptides is reversed. Even though the monosaccharide compositions of hyaluronan and heparosan are identical, such differences in the sequences of the catalysts are expected because the PmHAS employs only inverting sugar transfer mechanisms whereas PmHS1 requires both retaining and inverting mechanisms.  相似文献   

7.
The extracellular polysaccharide capsules of Pasteurella multocida types A, D, and F are composed of hyaluronan, N-acetylheparosan (heparosan or unsulfated, unepimerized heparin), and unsulfated chondroitin, respectively. Previously, a type D heparosan synthase, a glycosyltransferase that forms the repeating disaccharide heparosan backbone, was identified. Here, a approximately 73% identical gene product that is encoded outside of the capsule biosynthesis locus was also shown to be a functional heparosan synthase. Unlike PmHS1, the PmHS2 enzyme was not stimulated greatly by the addition of an exogenous polymer acceptor and yielded smaller- molecular-weight-product size distributions. Virtually identical hssB genes are found in most type A, D, and F isolates. The occurrence of multiple polysaccharide synthases in a single strain invokes the potential for capsular variation.  相似文献   

8.
Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected.  相似文献   

9.
C Zhang  L Liu  L Teng  J Chen  J Liu  J Li  G Du  J Chen 《Metabolic engineering》2012,14(5):521-527
As a precursor of bioengineered heparin, heparosan is currently produced from Escherichia coli K5, which is pathogenic bacteria potentially causing urinary tract infection. Thus, it would be advantageous to develop an alternative source of heparosan from a non-pathogeneic strain. In this work we reported the biosynthesis of heparosan via the metabolic engineering of non-pathogenic E. coli BL21 as a production host. Four genes, KfiA, KfiB, KfiC and KfiD, encoding enzymes for the biosynthesis of heparosan in E. coli K5, were cloned into inducible plasmids pETDuet-1 and pRSFDuet-1 and further transformed into E. coli BL21, yielding six recombinant strains as follows: sA, sC, sAC, sABC, sACD and sABCD. The single expression of KfiA (sA) or KfiC (sC) in E. coli BL21 did not produce heparosan, while the co-expression of KfiA and KfiC (sAC) could produce 63mg/L heparosan in shake flask. The strain sABC and sACD could produce 100 and 120mg/L heparosan, respectively, indicating that the expression of KfiB or KfiD was beneficial for heparosan production. The strain sABCD could produce 334mg/L heparosan in shake flask and 652mg/L heparosan in 3-L batch bioreactor. The heparosan yield was further increased to 1.88g/L in a dissolved oxygen-stat fed-batch culture in 3-L bioreactor. As revealed by the nuclear magnetic resonance analysis, the chemical structure of heparosan from recombinant E. coli BL21 and E. coli K5 was identical. The weight average molecular weight of heparosan from E. coli K5, sAC, sABC, sACD, and sABCD was 51.67, 39.63, 91.47, 64.51, and 118.30kDa, respectively. This work provides a viable process for the production of heparosan as a precursor of bioengineered heparin from a safer bacteria strain.  相似文献   

10.
肝素前体是化学酶法合成肝素的起点,肝素前体的微生物高效合成具有重要意义。在已构建的产肝素前体的枯草芽胞杆菌((1.71±0.08)g/L)中,分析了UDP-葡萄糖醛酸(UDP-GlcUA)途径中关键酶基因(pgcA、gtaB、tuaD)以及UDP-乙酰氨基葡糖(UDP-GlcNAc)途径中关键酶基因(glmS、glmM、glmU)的过量表达对肝素前体产量及其分子量的影响。在此基础上,通过共表达tuaD、gtaB、glmU、glmM和glmS基因,摇瓶中肝素前体产量提高至(2.89±0.11)g/L,分子量为(75.90±1.18)kDa。通过在3 L发酵罐中进行补料分批发酵,肝素前体的产量最终积累到(7.25±0.36)g/L,分子量为(46.66±2.71)kDa,为工业化生产肝素奠定了基础。  相似文献   

11.
Heparosan is an acidic polysaccharide natural product, which serves as the critical precursor in heparin biosynthesis and in the chemoenzymatic synthesis of bioengineered heparin. Heparosan is also the capsular polysaccharide of Escherichia coli K5 strain. The current study was focused on the examination of the fermentation of E. coli K5 with the goal of producing heparosan in high yield and volumetric productivity. The structure and molecular weight properties of this bacterial heparosan were determined using polyacrylamide gel electrophoresis (PAGE) and Fourier transform mass spectrometry. Fermentation of E. coli K5 in a defined medium using exponential fed‐batch glucose addition with oxygen enrichment afforded heparosan at 15 g/L having a number average molecular weight of 58,000 Da and a weight average molecular weight of 84,000 Da. Biotechnol. Bioeng. 2010;107: 964–973. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
The chemical step in the chemoenzymatic synthesis of bioengineered heparin has been examined and optimized statistically using a response surface methodology. A four factor, two level full factorial design experiment and a three factor Box-Behnken design were carried out. The goal was to establish a method to prepare N-sulfo, N-acetyl heparosan of the desired N-acetyl content, number average molecular weight, and in maximum yield by controlling the reactant concentrations, reaction time and reaction temperature. The response surface models obtained were used to predict the reaction conditions required to optimally prepare N-sulfo, N-acetyl heparosan from Escherichia coli generated heparosan starting material of different molecular weights.  相似文献   

13.
He  Jin  Zou  Juan  Shao  Zongze  Zhang  Jibin  Liu  Ziduo  Yu  Ziniu 《World journal of microbiology & biotechnology》2010,26(6):1135-1141
A novel bioflocculant HBF-3 produced by deep-sea bacterium mutant Halomonas sp. V3a’ was investigated with regard to its flocculating characteristics and mechanism. 4.0 m g l−1 HBF-3 showed the maximum flocculating activity of 96.9% in 5.0 g l−1 Kaolin suspension containing 11.25 mM CaCl2, and that its flocculating activity was more than 90% within 5–40°C and over 80% in a wide pH range (3.0–11.0). Chemical analyses indicated that the biopolymer HBF-3 was mainly a polysaccharide, including neutral sugar residues (20.6%), uronic acid residues (7.6%), amino sugar residues (1.6%) and sulfate groups (5.3%). Fourier transform infrared (FTIR) spectrum showed the presence of carboxyl and hydroxyl groups in HBF-3 molecular. The average molecular mass of HBF-3, as determined by gel filtration chromatography (GFC), was approximately 590 kDa. Flocculation of Kaolin suspension with HBF-3 acted as a model to explore the flocculating mechanism in which bridging mediated by Ca2+ was proposed as the primary action based upon the experimental observations.  相似文献   

14.
Pasteurella multocida Type D, a causative agent of atrophic rhinitis in swine and pasteurellosis in other domestic animals, produces an extracellular polysaccharide capsule that is a putative virulence factor. It was reported previously that the capsule was removed by treating microbes with heparin lyase III. We molecularly cloned a 617-residue enzyme, pmHS, which is a heparosan (nonsulfated, unepimerized heparin) synthase. Recombinant Escherichia coli-derived pmHS catalyzes the polymerization of the monosaccharides from UDP-GlcNAc and UDP-GlcUA. Other structurally related sugar nucleotides did not substitute. Synthase activity was stimulated about 7-25-fold by the addition of an exogenous polymer acceptor. Molecules composed of approximately 500-3,000 sugar residues were produced in vitro. The polysaccharide was sensitive to the action of heparin lyase III but resistant to hyaluronan lyase. The sequence of the pmHS enzyme is not very similar to the vertebrate heparin/heparan sulfate glycosyltransferases, EXT1 and 2, or to other Pasteurella glycosaminoglycan synthases that produce hyaluronan or chondroitin. The pmHS enzyme is the first microbial dual-action glycosyltransferase to be described that forms a polysaccharide composed of beta4GlcUA-alpha4GlcNAc disaccharide repeats. In contrast, heparosan biosynthesis in E. coli K5 requires at least two separate polypeptides, KfiA and KfiC, to catalyze the same polymerization reaction.  相似文献   

15.
Heparosan is a crucial-polysaccharide precursor for the chemoenzymatic synthesis of heparin, a widely used anticoagulant drug. Presently, heparosan is mainly extracted with the potential risk of contamination from Escherichia coli strain K5, a pathogenic bacterium causing urinary tract infection. Here, a nonpathogenic probiotic, E. coli strain Nissle 1917 (EcN), was metabolically engineered to carry multiple copies of the 19-kb kps locus and produce heparosan to 9.1 g/L in fed-batch fermentation. Chromosome evolution driven by antibiotics was employed to amplify the kps locus, which governed the synthesis and export of heparosan from EcN at 21 mg L−1 OD−1. The average copy number of kps locus increased from 1 to 24 copies per cell, which produced up to 104 mg L-1 OD−1 of heparosan in the shaking flask cultures of engineered strains. The following in-frame deletion of recA stabilized the recombinant duplicates of chromosomal kps locus and the productivity of heparosan in continuous culture for at least 56 generations. Fed-batch fermentation of the engineered strain EcN8 was carried out to bring the yield of heparosan up to 9.1 g/L. Heparosan from the fermentation culture was further purified at a 75% overall recovery. The structure of purified heparosan was characterized and further modified by N-sulfotransferase with 3′-phosphoadenosine-5′-phosphosulfate as the sulfo-donor. The analysis of element composition showed that heparosan was N-sulfated by over 80%. These results indicated that duplicating large DNA cassettes up to 19-kb, followed by high-cell-density fermentation, was promising in the large-scale preparation of chemicals and could be adapted to engineer other industrial-interest bacteria metabolically.  相似文献   

16.
The substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase from a mouse mastocytoma was examined to determine the effects of N-acetyl and O-sulfate groups on substrate recognition by the enzyme. [5-3H]Glucuronosyl-labeled heparosan N-sulfate was prepared enzymatically and was modified chemically by partial N-desulfation and N-acetylation. After enzymatic release of tritium, the location of remaining label was determined by deaminative cleavage and analysis of resulting di-, tetra-, and higher oligosaccharides. This analysis indicated that a D-glucuronosyl residue is recognized as a substrate if it is linked at C-1 to an N-acetylated glucosamine residue and at C-4 to an N-sulfated unit. However, the reverse structure, in which the D-glucuronosyl moiety is bound at C-1 to an N-sulfated residue and at C-4 to N-acetylated glucosamine, is not a substrate. Similar studies with O-sulfated heparin intermediates showed that O-sulfate groups either at C-2 of the L-iduronosyl moieties or at C-6 of vicinal D-glucosaminyl moieties prevent 5-epimerization. These findings were confirmed by studies of the reverse reaction, in which tritium was incorporated from 3H2O into partially O-desulfated heparin and the location of incorporated radioactivity was determined. These and more direct experiments corroborated the previous conclusion that the L-iduronosyl moieties are formed after N-sulfation but before O-sulfation. Assessment of the influence of substrate size on the reaction further showed that a large substrate is preferred; an octasaccharide released tritium at a rate approximately 10% of that observed for the parent polysaccharide, and some release occurred also with smaller oligosaccharides.  相似文献   

17.
The objective of this study was to improve the biological water–gas shift reaction for producing hydrogen (H2) by conversion of carbon monoxide (CO) using an anaerobic thermophilic pure strain, Carboxydothermus hydrogenoformans. Specific hydrogen production rates and yields were investigated at initial biomass densities varying from 5 to 20 mg volatile suspended solid (VSS) L−1. Results showed that the gas–liquid mass transfer limits the CO conversion rate at high biomass concentrations. At 100-rpm agitation and at CO partial pressure of 1 atm, the optimal substrate/biomass ratio must exceed 5 mol CO g−1 biomass VSS in order to avoid gas–liquid substrate transfer limitation. An average H2 yield of 94 ± 3% and a specific hydrogen production rate of ca. 3 mol g−1 VSS day−1 were obtained at initial biomass densities between 5 and 8 mg VSS−1. In addition, CO bioconversion kinetics was assessed at CO partial pressure from 0.16 to 2 atm, corresponding to a dissolved CO concentration at 70°C from 0.09 to 1.1 mM. Specific bioactivity was maximal at 3.5 mol CO g−1 VSS day−1 for a dissolved CO concentration of 0.55 mM in the culture. This optimal concentration is higher than with most other hydrogenogenic carboxydotrophic species.  相似文献   

18.
Two extracellular chitinases were purified from Paecilomyces variotii DG-3, a chitinase producer and a nematode egg-parasitic fungus, to homogeneity by DEAE Sephadex A-50 and Sephadex G-100 chromatography. The purified enzymes were a monomer with an apparent molecular mass of 32 kDa (Chi32) and 46 kDa (Chi46), respectively, and showed chitinase activity bands with 0.01% glycol chitin as a substrate after SDS-PAGE. The first 20 and 15 N-terminal amino acid sequences of Chi32 and Chi46 were determined to be Asp-Pro-Typ-Gln-Thr-Asn-Val-Val-Tyr-Thr-Gly-Gln-Asp-Phe-Val-Ser-Pro-Asp-Leu-Phe and Asp-Ala-X-X-Tyr-Arg-Ser-Val-Ala-Tyr-Phe-Val-Asn-Trp-Ala, respectively. Optimal temperature and pH of the Chi32 and Chi46 were found to be both 60°C, and 2.5 and 3.0, respectively. Chi32 was almost inhibited by metal ions Ag+ and Hg2+ while Chi46 by Hg2+ and Pb2+ at a 10 mM concentration but both enzymes were enhanced by 1 mM concentration of Co2+. On analyzing the hydrolyzates of chitin oligomers [(GlcNAc) n , n = 2–6)], it was considered that Chi32 degraded chitin oligomers as an exo-type chitinase while Chi46 as an endo-type chitinase.  相似文献   

19.
20.
《Process Biochemistry》2010,45(6):1011-1016
An aminopeptidase with broad substrate specificity was purified to homogeneity (123.7-fold) with a yield of 3.43% from chicken (Gallus gallus) intestine using a combination of chromatographic separation strategies. The enzyme was identified as alanyl aminopeptidase or aminopeptidase N (APN) by Peptide Mass Fingerprinting. The molecular weight of the enzyme was estimated to be ∼180 kDa by SDS-PAGE and gel filtration chromatography. The enzyme was found to be a glycoprotein, having 40% sugar residue and a molecular mass of 108 kDa after deglycosylation. The enzymatic activity was optimal at 60 °C and pH 6.0. The enzyme preferentially hydrolyzed Leu-β-NA (Km = 0.1 mM) followed by Ala, Phe, Tyr and Gly at N-terminal. The enzyme activity was completely inhibited by 1,10 phenanthroline (1 mM) and bestatin (1 mM) confirming it as a metalloprotease. Potential of this enzyme in combination with other endoproteases for the production of debittered protein hydrolysates has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号