首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Polyethylene terephthalate (PET) hydrolase from Ideonella sakaiensis (IsPETase) can be used to degrade PET. In order to use IsPETase in industry, we studied the enzymatic activity of IsPETase in different conditions containing environmental and physicochemical factors commonly found in nature. We observed that salts and glycerol enhanced the enzymatic activity, while detergents and organic solvents reduced the enzymatic activity. IsPETase hydrolyzed p-nitrophenyl (p-NP) esters instead of naphthyl esters. To make IsPETase an enzyme capable of hydrolyzing naphthyl esters, site-directed mutagenesis was carried out based on the structural information provided by the crystal structure. We found that the IsPETaseS93M, IsPETaseW159F, and IsPETaseN241F mutants can hydrolyze naphthyl esters. IsPETase engineering can direct researchers to use this α/β-hydrolase protein scaffold to design enzymes that can hydrolyze a variety of polyesters.  相似文献   

2.
Poly(ethylene terephthalate) (PET) is the most commonly used polyester polymer resin in fabrics and storage materials, and its accumulation in the environment is a global problem. The ability of PET hydrolase from Ideonella sakaiensis 201-F6 (IsPETase) to degrade PET at moderate temperatures has been studied extensively. However, due to its low structural stability and solubility, it is difficult to apply standard laboratory-level IsPETase expression and purification procedures in industry. To overcome this difficulty, the expression of IsPETase can be improved by using a secretion system. This is the first report on the production of an extracellular IsPETase, active against PET film, using Sec-dependent translocation signal peptides from E. coli. In this work, we tested the effects of fusions of the Sec-dependent and SRP-dependent signal peptides from E. coli secretory proteins into IsPETase, and successfully produced the extracellular enzyme using pET22b-SPMalE:IsPETase and pET22b-SPLamB:IsPETase expression systems. We also confirmed that the secreted IsPETase has PET-degradation activity. The work will be used for development of a new E. coli strain capable of degrading and assimilating PET in its culture medium.  相似文献   

3.
Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon-rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon-poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism.  相似文献   

4.
Polyethylene terephthalate (PET) is one of the most-consumed synthetic polymers, with an annual production of 50 million tons. Unfortunately, PET accumulates as waste and is highly resistant to biodegradation. Recently, fungal and bacterial thermophilic hydrolases were found to catalyze PET hydrolysis with optimal activities at high temperatures. Strikingly, an enzyme from Ideonella sakaiensis, termed PETase, was described to efficiently degrade PET at room temperature, but the molecular basis of its activity is not currently understood. Here, a crystal structure of PETase was determined at 2.02 Å resolution and employed in molecular dynamics simulations showing that the active site of PETase has higher flexibility at room temperature than its thermophilic counterparts. This flexibility is controlled by a novel disulfide bond in its active site, with its removal leading to destabilization of the catalytic triad and reduction of the hydrolase activity. Molecular docking of a model substrate predicts that PET binds to PETase in a unique and energetically favorable conformation facilitated by several residue substitutions within its active site when compared to other enzymes. These computational predictions are in excellent agreement with recent mutagenesis and PET film degradation analyses. Finally, we rationalize the increased catalytic activity of PETase at room temperature through molecular dynamics simulations of enzyme-ligand complexes for PETase and other thermophilic PET-degrading enzymes at 298, 323, and 353 K. Our results reveal that both the binding pose and residue substitutions within PETase favor proximity between the catalytic residues and the labile carbonyl of the substrate at room temperature, suggesting a more favorable hydrolytic reaction. These results are valuable for enabling detailed evolutionary analysis of PET-degrading enzymes and for rational design endeavors aiming at increasing the efficiency of PETase and similar enzymes toward plastic degradation.  相似文献   

5.
随着生物技术的迅速发展,酶解法作为一种绿色可持续的聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)回收处理方案,有望解决全球范围内废弃PET带来的环境污染问题。众多PET水解酶中,来自Ideonella sakaiensis的PETase因其对PET底物的高特异性成为当下研究的热点。基于对酶的结构和功能的深刻理解,本文总结了近年来PETase的工程改造进展,以提高酶的降解活性、热稳定性和对底物的吸附性;介绍了PETase的分泌表达策略、细胞表面展示技术,以及PETase与MHETase双酶系统的应用;最后,我们对塑料生物降解领域存在的挑战及可能的解决途径进行了展望,这些工作将为促进聚合物生物降解的实际应用提供参考。  相似文献   

6.
To increase the thermostability of Rhizomucor miehei lipase, the software Disulfide by Design was used to engineer a novel disulfide bond between residues 96 and 106, and the corresponding double cysteine mutants were constructed. The R. miehei lipase mutant could be expressed by Pichia pastoris in a free secreted form or could be displayed on the cell surface. The new disulfide bond spontaneously formed in the mutant R. miehei lipase. Thermostability was examined by measuring of hydrolysis activity using 4-nitrophenyl caprylate as a substrate. The engineered disulfide bond contributed to thermostability in the free form of the R. miehei lipase variant. The variant displayed on the yeast cell surface had significantly increased residual hydrolytic activity in aqueous solution after incubation at 60°C for 5 h and increased synthetic activity in organic solvent at 60°C. These results indicated that yeast surface display might improve the stability of R. miehei lipase, as well as amplifying the thermostability through the engineered disulfide bond.  相似文献   

7.
石化来源的聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)被广泛用于矿泉水瓶、食品包装和纺织品等领域,因其在自然界中不易分解,大量使用后的PET废弃物造成了严重的环境污染与资源浪费。使用生物酶法对PET废弃物进行解聚,并对解聚产物进行升级循环利用是进行塑料污染治理的重要方向之一,其中关键的是PET水解酶的解聚效率。对苯二甲酸双(羟乙基)酯(bis(hydroxyethyl)terephthalate,BHET)是PET生物酶解的中间产物,其累积是限制PET水解酶催化效率的一个重要因素,BHET水解酶和PET水解酶的联用能提升PET的整体水解效率。来源于嗜热氢化杆菌(Hydrogenobacter thermophilus)的双烯内酯酶(HtBHETase)对BHET有显著水解效果,将该酶在大肠杆菌(Escherichia coli)中进行重组表达并纯化后,对其酶学性质进行了研究。结果显示,HtBHETase对短碳链的酯类如对硝基苯酚乙酸酯催化活性较高,HtBHETase以BHET为底物时的最适反应pH值和最适反应温度分别为5.0和55℃;该酶有较好的热稳定性,经80℃的条件处理1 h仍能保持80%以上活性,显示出了良好的热稳定性,HtBHETase有在PET塑料生物解聚中使用的潜力,本研究为推动生物酶法降解PET提供了新的参考。  相似文献   

8.
A novel glycoside hydrolase from the hyperthermophilic archaeonMethanococcus jannaschii has been cloned intoEscherichia coli. Extremely thermoactive and thermostable amylolytic activity was confirmed in partially purified enzyme solution. This enzyme exhibited a temperature optimum of 100 °C and a pH optimum pH 5.0–8.0. Hydrolysis of large 1,6-α- and 1,4-α-linked polysaccharides yielded glucose polymers of 1–7 units. Incubation with amylose displayed the highest activity. The catalyst was activated and stabilized by Ca2+ and exhibited extreme thermostability at 100 °C with a half-life of 78 h.  相似文献   

9.
A gene encoding a thermostable pullulan-hydrolyzing enzyme was isolated from environmental genomic DNA extracted from soil sediments of Bor Khleung hot spring in Thailand. Sequence comparison with related enzymes suggested that the isolated enzyme, designated Env Npu193A, was most likely a neopullulanase-like enzyme. Env Npu193A was expressed in Pichia pastoris as a monomeric recombinant protein. The purified Env Npu193A exhibited pH stability ranging from 3 to 9. More than 60% of enzyme activity was retained after incubation at 60 °C for 1 h. Env Npu193A was found to hydrolyze various substrates, including pullulan, starch, and γ-cyclodextrin. The optimal working condition for Env Npu193A was at pH 7 at 75 °C with K m and V max toward pullulan of 1.22±0.3% and 23.24±1.7 U/mg respectively. Env Npu193A exhibited distinct biochemical characteristics as compared with the previously isolated enzyme from the same source. Thus, a culture-independent approach with sequence-basing was found to be an effective way to discover novel enzymes displaying unique substrate specificity and high thermostability from natural bioresources.  相似文献   

10.
Wu  Zhiyun  Deng  Wenfeng  Tong  Yapei  Liao  Qian  Xin  Dongmin  Yu  Huashun  Feng  Juan  Tang  Lixia 《Applied microbiology and biotechnology》2017,101(8):3201-3211

As a crucial factor for biocatalysts, protein thermostability often arises from a combination of factors that are often difficult to rationalize. In this work, the thermostable nature of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) was systematically explored using a combinatorial directed evolution approach. For this, a mutagenesis library of HheC mutants was first constructed using error-prone PCR with low mutagenesis frequency. After screening approximately 2000 colonies, six mutants with eight mutation sites were obtained. Those mutation sites were subsequently combined by adopting several rounds of iterative saturation mutagenesis (ISM) approach. After four rounds of saturation mutagenesis, one best mutant ISM-4 with a 3400-fold improvement in half-life (t 1/2) inactivation at 65 °C, 18 °C increase in apparent T m value, and 20 °C increase in optimum temperature was obtained, compared to wild-type HheC. To the best of our knowledge, the mutant represents the most thermostable HheC variant reported up to now. Moreover, the mutant was as active as wild-type enzyme for the substrate 1,3-dichloro-2-propanol, and they remained most enantioselectivity of wild-type enzyme in the kinetic resolution of rac-2-chloro-1-phenolethanol, exhibiting a great potential for industrial applications. Our structural investigation highlights that surface loop regions are hot spots for modulating the thermostability of HheC, the residues located at these regions contribute to the thermostability of HheC in a cooperative way, and protein rigidity and oligomeric interface connections contribute to the thermostability of HheC. All of these essential factors could be used for further design of an even more thermostable HheC, which, in turn, could greatly facilitate the application of the enzyme as a biocatalyst.

  相似文献   

11.
李秀  杨海涛  王泽方 《微生物学报》2019,59(12):2251-2262
聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)因其良好的耐用性和可塑性,已在世界范围内的工业领域和日常生活中得到广泛应用。目前自然环境中大量PET使用废弃物的积累和迁移给全球生态系统带来了严重负担,因此PET的降解问题已成为全球性的热点问题。微生物酶降解法目前被认为是一种理想绿色PET降解方法,有希望应用于大规模降解PET废弃物降解处理。传统的PET降解酶主要包括脂肪酶、酯酶和角质酶等,但这些酶的PET降解活性相对不高。近期科学家从Ideonella sakaiensis细菌中分离了一种新型水解酶PETase,能够特异性高效降解PET。本文从结构生物学角度对多种PET降解酶进行梳理,重点总结了新近发现的PETase催化机制,为发展改造更有效的PET降解酶提供理论依据。  相似文献   

12.
Abstract

Glucan branching enzymes are responsible for the synthesis of α(1→6) glycosidic bonds in glycogen and amylopectin. The glucan branching enzyme of the hyperthermophile Aquifex aeolicus is the most thermoactive and thermostable glucan branching enzyme described. The gene encoding this glucan branching enzyme was overexpressed in E. coli and purified using γ-cyclodextrin affinity chromatography. Subsequently, the enzyme was stable up to 90°C. Its thermostability may be explained by the relatively high number of aromatic amino acid residues present, in combination with a relatively low number glutamine/asparagine residues. The Km for amylose was 4µM and the Vmax was 4.9 U/mg of protein (at optimal pH and temperature). The side-chain distribution of the branched glucan formed from amylose was determined.  相似文献   

13.
Cellulose is an attractive feedstock for biofuel production because of its abundance, but the cellulose polymer is extremely stable and its constituent sugars are difficult to access. In nature, extracellular multi-enzyme complexes known as cellulosomes are among the most effective ways to transform cellulose to useable sugars. Cellulosomes consist of a diversity of secreted cellulases and other plant cell-wall degrading enzymes bound to a protein scaffold. These scaffold proteins have cohesin modules that bind conserved dockerin modules on the enzymes. It is thought that the localization of these diverse enzymes on the scaffold allows them to function synergistically. In order to understand and harness this synergy smaller, simplified cellulosomes have been constructed, expressed, and reconstituted using truncated cohesin-containing scaffolds.Here we show that an 18-subunit protein complex called a rosettasome can be genetically engineered to bind dockerin-containing enzymes and function like a cellulosome. Rosettasomes are thermostable, group II chaperonins from the hyperthermo-acidophilic archaeon Sulfolobus shibatae, which in the presence of ATP/Mg2+ assemble into 18-subunit, double-ring structures. We fused a cohesin module from Clostridium thermocellum to a circular permutant of a rosettasome subunit, and we demonstrate that the cohesin–rosettasomes: (1) bind dockerin-containing endo- and exo-gluconases, (2) the bound enzymes have increased cellulose-degrading activity compared to their activity free in solution, and (3) this increased activity depends on the number and ratio of the bound glucanases. We call these engineered multi-enzyme structures rosettazymes.  相似文献   

14.
Aims: Discovery and utilization of highly active and thermostable phosphoglucomutase (PGM) would be vital for biocatalysis mediated by multiple enzymes, for example, high‐yield production of enzymatic hydrogen. Methods and Results: The thermophilic cellulolytic bacterium Clostridium thermocellum was hypothesized to have a very active PGM because of its key role in microbial cellulose utilization. The Cl. thermocellum ORF Cthe1265 encoding a putative PGM was cloned and expressed in Escherichia coli. The purified enzyme appeared to be a monomer with an estimated molecular weight of 64·9 kDa. This enzyme was found to be a dual‐specificity enzyme – PGM/phosphomannomutase (PMM). Mg2+ and Mn2+ were activators. Ser144 was identified as an essential catalytic residue through site‐directed mutagenesis. The kcat and Km of PGM were 190 s?1 and 0·41 mmol l?1 on glucose‐1‐phosphate and 59 s?1 and 0·44 mmol l?1 on mannose‐1‐phosphate, respectively, at 60°C. Thermostability of PGM at a low concentration (2 nmol l?1, 100 U l?1) was enhanced by 12‐fold (i.e. t1/2 = 72 h) at 60°C with addition of bovine serum albumin, Triton X‐100, Mg2+and Mn2+. Conclusions: The ORF Cthe1265 was confirmed to encode a PGM with PMM activity. This enzyme was the most active PGM reported. Significance and Impact of the Study: This highly active PGM with enhanced thermostability would be an important building block for in vitro synthetic biology projects (complicated biotransformation mediated by multiple enzymes in one pot).  相似文献   

15.
Improvement of thermostability in engineered enzymes can allow biocatalysis on substrates with poor aqueous solubility. Denaturation of the cofactor-binding loops of Escherichia coli transketolase (TK) was previously linked to the loss of enzyme activity under conditions of high pH or urea. Incubation at temperatures just below the thermal melting transition, above which the protein aggregates, was also found to anneal the enzyme to give an increased specific activity. The potential role of cofactor-binding loop instability in this process remained unclear. In this work, the two cofactor-binding loops (residues 185–192 and 382–392) were progressively mutated towards the equivalent sequence from the thermostable Thermus thermophilus TK and variants assessed for their impact on both thermostability and activity. Cofactor-binding loop 2 variants had detrimental effects on specific activity at elevated temperatures, whereas the H192P mutation in cofactor-binding loop 1 resulted in a two-fold improved stability to inactivation at elevated temperatures, and increased the critical onset temperature for aggregation. The specific activity of H192P was 3-fold and 19-fold higher than that for wild-type at 60 °C and 65 °C respectively, and also remained 2.7-4 fold higher after re-cooling from pre-incubations at either 55 °C or 60 °C for 1 h. Interestingly, H192P was also 2-times more active than wild-type TK at 25 °C. Optimal activity was achieved at 60 °C for H192P compared to 55 °C for wild type. These results show that cofactor-binding loop 1, plays a pivotal role in partial denaturation and aggregation at elevated temperatures. Furthermore, a single rigidifying mutation within this loop can significantly improve the enzyme specific activity, as well as the stability to thermal denaturation and aggregation, to give an increased temperature optimum for activity.  相似文献   

16.
Abstract

Thermostability is considered to be an important parameter to measure the feasibility of enzymes for industrial applications. Generally, higher thermostability makes an enzyme more competitive and desirable in industry. However, most natural enzymes show poor thermostability, which restricts their application. Protein structure modification is a desirable method to improve enzyme properties. In recent years, tremendous progress has been achieved in protein thermostability engineering. In this review, we provide a systemic overview on the approaches of protein structure modification for the improvement of enzyme thermostability during the last decade. Structure modification approaches, including the introduction of non-covalent interactions and covalent bonds, increase of proline and/or decrease in glycine, reinforcement of subunit–subunit interactions, introduction of glycosylation sites, truncation and cyclization have been highlighted.  相似文献   

17.
Thermodynamic stability of a protein at elevated temperatures is a key factor for thermostable enzymes to catalyze their specific reactions. Yet our understanding of biological determinants of thermostability is far from complete. Many different atomistic factors have been suggested as possible means for such proteins to preserve their activity at high temperatures. Among these factors are specific local interatomic interactions or enrichment of specific amino acid types. The case of glycosyl hydrolase family endoglucanase of Trichoderma reesei defies current hypotheses for thermostability because a single mutation far from the active site (A35?V) converts this mesostable protein into a thermostable protein without significant change in the protein structure. This substantial change in enzymatic activity cannot be explained on the basis of local intramolecular interactions alone. Here we present a more global view of the induced thermostability and show that the A35?V mutation affects the underlying structural rigidity of the whole protein via a number of long-range, non-local interactions. Our analysis of this structure reveals a precisely tuned, rigid network of atomic interactions. This cooperative, allosteric effect promotes the transformation of this mesostable protein into a thermostable one.  相似文献   

18.
We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene (sharing 48% protein sequence identity to AldO) was identified, cloned and expressed in Escherichia coli. Following 6xHis tag purification, characterization revealed the protein to be a covalent flavoprotein of 47?kDa with a remarkably similar reactivity and substrate specificity to that of AldO. A steady-state kinetic analysis with a number of different polyol substrates revealed lower catalytic rates but slightly altered substrate specificity when compared to AldO. Thermostability measurements revealed that the novel AldO is a highly thermostable enzyme with an unfolding temperature of 84?°C and an activity half-life at 75?°C of 112?min, prompting the name HotAldO. Inspired by earlier studies, we attempted a straightforward, exploratory approach to improve the thermostability of AldO by replacing residues with high B-factors with corresponding residues from HotAldO. None of these mutations resulted in a more thermostable oxidase; a fact that was corroborated by in silico analysis.  相似文献   

19.
The alkaliphilic Bacillus halodurans strain PPKS-2 was shown to produce extracellular alkaliphilic, thermostable and halotolerent xylanase. The culture conditions for xylanase production were optimized with respect to pH, temperature, NaCl and inexpensive agro waste as substrates. Xylanase yield was enhanced more than four fold in the presence of 1% corn husk and 0.5% peptone or feather hydrolysate at pH 11 and 37°C. Xylanase was purified to 11.8-fold with 8.7% yield by using traditional chromatographic methods whereas the same enzyme purified to 20-fold with 72% yield by using corn husk as ligand. Its molecular mass was estimated to be 24 kDa by SDS–PAGE. The xylanase had maximal activity at pH 11 and 70°C. The enzyme was active over broad range, 0–20% sodium chloride. The enzyme was thermostable retaining 100% of the original activity at 70°C for 3 h. The apparent K m values for oat spelt xylan and brichwood xylan were 4.1 and 4.4 mg/ml respectively. The deduced internal amino acid sequence of PPKS-2 xylanase resembled the sequence of β-1,4-endoxylanase, which is member of glycoside hydrolase family 11.  相似文献   

20.
Marine bacterium Reinekea sp. KIT-YO10 was isolated from the seashore of Kanazawa Port in Japan as a seaweed-degrading bacterium. Homology between KIT-YO10 16S rDNA and the 16S rDNA of Reinekea blandensis and Reinekea marinisedimentorum was 96.4 and 95.4%, respectively. Endo-1,4-β-D-mannanase (β-mannanase, EC 3.2.1.78) from Reinekea sp. KIT-YO10 was purified 29.4-fold to a 21% yield using anion exchange chromatography. The purified enzyme had a molecular mass of 44.3?kDa, as estimated by SDS-PAGE. Furthermore, the purified enzyme displayed high specificity for konjac glucomannan, with no secondary agarase and arginase activity detected. Hydrolysis of konjac glucomannan and locust bean gum yielded oligosaccharides, compatible with an endo mode of substrate depolymerization. The purified enzyme possessed transglycosylation activity when mannooligosaccharides (mannotriose or mannotetraose) were used as substrates. Optimal pH and temperature were determined to be 8.0 and 70?°C, respectively. It showed thermostability at temperatures from 20 to 50?°C and alkaline stability up to pH 10.0. The current enzyme was thermostable and thermophile compared to the β-mannanase of other marine bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号